460377-02

Jr Network Systems,

Hxx3 (Rel 2.0) USER-Access”

for

UNIX

User Guide

Revision Record

Revision Description

01 Manual released.

(11/87)

02 The manual was updated to correspond to USER-Access release 2.0

(10/89) and was combined with the USER-Access User’s Guide (publication
number 460375) to create a single host-specific manual. The manual
was generalized to cover all versions of UNIX and Berkeley 4.x BSD.
The format was changed from 5-1/2"x8-1/2" to 8-1/2"x11".

Portions of text which have been changed or added at this revision are indicated by a bar (*)")
in the margin. Minor editorial revisions are not indicated.

© 1987, 1989 by Network Systems Corporation. Reproduction is prohibited without prior
permission of Network Systems Corporation. Printed in U.S.A. All rights reserved.

Address comments concerning this manual to:

Network Systems Corporation
Publications Department

7600 Boone Avenue North
Minneapolis, MN 55428-1099
USA

page ii 460377-02

Preface

This manual describes the Hxx3 USER-Access™ software for UNIX systems. USER-Access is
used in conjunction with Network Systems® NETwork EXecutive (NETEX®) software to
allow the end-user to easily transfer files across the network.

This manual is intended for all users of USER-Access, and contains all of the information
necessary to expand the user’s ability to the fullest extent of the software.

The manual is divided into seven parts plus two appendices:

“Introduction,” which gives a basic description of USER-Access and a sample of a
USER-Access session.

“UUNIX Local User's Guide,” which describes the features of USER-Access on UNIX
systems as scen by the local user. This section includes a description of the commands in
the local interface.

“UJNIX Remote User's Guide,” which describes features of Hxx3 as seen by a remote user.
This includes executing commands on 2 UNIX host remotely and transferring files to and
from a remote UNIX host.

“File Handling Under UNIX USER-Access,” which describes the way UNIX manipulates
files. This includes examples of transferring files, transfer modes supported by UNIX
USER-Access, wildcard characters, and file specifications.

“Advanced Local User's Guide,” which describes the advanced features of USER-Access
on UNIX systems as seen by the local user.

“Central Archiving,” which discusses how USER-Access can be used along with the
standard UNIX backup utilities to archive files to remote hosts.

“Command Descriptions,” which provides detailed descriptions of all commands available
in Hxx3 USER-Access.

Appendix B, “USER-Access 2.0 Release Notes for UNIX” on page 187 provides a list of the
features in this release of Hxx3 USER-Access.

Format of Parameter Descriptions

The following conventions are used in this manual to describe the format of control statements
and parameters:

e MIXedcase - The minimum spelling of a keyword. (MIX would be the minimum spelling
in this example.)

o lowercase - user-supplied name or string.

« 1Vertical Bars| - choose exactly one of the items enclosed in the vertical bars.
* [Brackets] - optional parameter.

s No delimiter - required parameter.

* Special fonts

460377-02 Preface page iii

System display - indicates system output.

User input - indicates user input on the command line.

Notice to the Reader

This product is intended for use only as described in this document. Network Systems Corpo-
ration cannot be responsible for any use of undescribed features or options. This manual is
subject to change without notice.

This document and the programs described in it are furnished under a license from Network
Systems Corporation and may be used, copied, and disclosed only in accordance with such
license,

This document contains references to the trademarks of the following corporations.
Corporation Referenced Trademarks and Products

Network Systems Corporation Network Systems, HYPERchannel, HYPERbus,
: NETEX, DATApipe, NSC, BFX, PFX, RDS,
Link Adapter, PC DATAport, 3270 Multiswitch,
USER-Access, Packet Control Facility, and
EnterpriseChannel Controller

AT&T Information Systems, Inc. UNIX, AT&T
International Business Machines IBM

Sun Microsystems, Inc. SUN

University of California, Berkeley Berkeley 4.x BSD

These references are made for informational purposes only.

page iv Preface 460377-02

Contents

TREOAUCHDT . . o o o o o e e e e e e e e e e e e e e e e e e e 1
TISER-ACCESS OVEIVIEW o v o e i it e e e et e e e e e 1
How UUSER-ACCESS WOTKS o o o i et e i it e st e e m s s 2
Introduction to USER-Access and UNDX i 2
Introduction to USER-Access and NETEXo 0 0o it e oo 3
USER-Access, NETEX and the ISO Model oo 3
Sample UNIX USER-Access Sessiono 5
UNIX Local Usel's GUIde o v v e e e e e e e e 11
IRITOAUCHON . o o v v o e 11
Invoking USER-Access in UNIX o e e i
Local UNTX USER-Access Startup Files oo e 12
Remote USER-Access Startup Files oo 13
Getting Started e 13
USER-Access Commands and Command Qualifters oo 13
Displaying the Valid Qualifiers for a Command oo 14
Displaying the Current Value of a Qualifiero 14
Setting 2 Command Qualifier 15
Overriding a Command Qualifier 15
Online Help . o oo ottt e 16
Controlling USER-Access Input and Output oot e 16
USER-Access Error MESSages . . . 0 oo v v ot 18
ABASIAE . o oot e e 19
Terminating 2 USER-Access SESSIOno 20
Establishing a Connection to a Remote Host v 20
Using CONNECT to Establish a Commectiont 20
Using LOGIN to Establish a Connectiont 21
Exchanging Host Information on COROECtot m e 22
Establishing Multiple Host Connectionst 23
Disconnecting from a HOsto e 24
Transferring Filesasa Local User i 25
Sending Files to a Remote HOSTot 25
Receiving Files from a Remote Host e e e e e e 26
Send and Receive Qualifiers L 26
Executing Remote Host Commandsottt 28
Executing Local UNIX Commands- ..ot 29
Issuing Local UNIX Host-Independent Commands oo 31
Editing Remote Files witha UNIX Editor oo ... 33
Interrupting a Command within UNIX USER-Accesso e e 33
Changing the Default UNDX SHELL e 33
UNIX Remote User’s GUIGe v o v it e e e e e e e e e e e e e e 33
Connecting intoa UNDX HOSU 0 vt i v i oo 35
CONNECT Qualifiers Used by UNIX USER-Access o oononroee oo 35
Remote UNIX USER-Access Startup Files o o i 36
Transferring Files toa UNIX HOStot tiereeeeee 36
Executing Remote UNIX Commandsot 37
Issuing Remote UNIX Host Independent Commands oo e 38
File Handling Under UNIX USER-ACCESS oo 41
UNIX File Transfer Qualifiers and Default Values oo oo 41
Definition of DIRECTORY Under UNIX USER-ACCESS oo oo i oo o im e o s 42
UNIX File SPecifications o v v v v it v v m e e e e 43
UNTX File Specification Exampleso 43
File Transfer Examples from a Local UNIX Host oo 44

460377-02 Contents page v

<

Example 1 ...
Bxample2 0 Tl
File Transfer Examples to a Remote UNIXHost
Bxample I ... T
Example2 0 il

Source Wildcard Support for UNIX File Transfers .

Destination Wildcard Support for UNIX File Transfers .
Transfer Modes Supported Under UNIX USER-Access

Advanced Local User's Guide
fntroduction ... LTI

Sting Literals ... 0TI

Sting Functions [l 1T
Arithmetic Operations, [.1 7T T
CHR Function [[[111t
CMP Function 0110
DATE Function

DFN and NDF Functions |/ '''"""""
ENV Function [[l Tiiiiooees
EQS and NES Functions [[777t
EXT Function [[1T oo
INDEX Function [[7"ttt
LEN Function 11Tttt

SLEEP Function [[11 Tttt
STATUS Function [[1 """t
T IME Function L. 0TI

USER-Access Iput Files
Echoing Input Seripts at the Terminal 7
Displaying Output and Accepting Input within a Script
Passing Parameters to a Sedpt
Using String Functions within a USER-Access Script
Using USER-Access Labels and GOTOs
Using the ON (ERROR/INT ERRUPT) Command
Checking Command Stats T T

Creating USER-Access Aliases

Creating Multicommand USER-Access Aliases
Passing Parameters to an Alias 7 70
Accepling Input within a USER-Access Alias ..,
Abbreviating Alias Names | Tt

Defining Multiword Alias Names @ ' "Tioto .
Debugging a USER-Access Alias or Imput Seript

Error Message Formatting . .

USER-AccessCodeConversionl:::::::::::::::::::::::::
USER-Access Data Vedfication 1T

UNIX USER-Access SEARCH Keywords (SITE), (USER), and (NONE)

User-Definable HELP Files Under UNIX ..o .
Running USER-Access as a Batch Job Under UNIX
Running a UNIX Stand-Alone USER-Access Server .,

page vi Contents

................. 45

................. 90

460377-02

s

Advanced UNDX Transfer Modes o i i e i oo e e e e s 100

Central Archiving e 103
IntroduCOR . . o . s e o e e e e e e e e e e e e e e e 103
Using Archivingo .o o e 104
Archiving from a Satellite Site 105
Archiving from a Central Site 106
File Transfer OPONS o v v i it i oo e e e 109
UNIX BACKUP Utility Considerations« .ottt 109
Archiving with DUMP/RESTORE e e 110
NETEX Considerations for Archiving e 112
UNIX as 2 Central SIte . . . o o o ot e e e e e e e e e 112
The Central Archiving Alases o 112
BACKUP ALBS ot e e e e e e e e e e e e e 113
DESCHPHON . o - & v o o e e e e e e e 113
FOIMUAL o o o o e 113
EXamples . . oo v o e e e e e e e ae e e e 113
LIST ATAS & o v o o o v e e e e e e e e e e e e e e e e 114
DESCHPHON . . v v v o it it e e e e e 114
FOIOAL .+ + o v v v e e e e e e e e e e e e e e 114
Examples e 114
RESTORE ALIAS . . o . o i v ot et e e e e e e e e e e e e e e e e 115
DESCHPHOR .« o . o v e e e et e e e 115
FOIBAL .+ o o v o v v e e e e e e e e e e e e e e e e e e e 115
EXamples i e e e e 115
Command Deseriptions 117
ASK Commantd . . v v e e e e e e e e e e e e e e 118
DESCHPHOR « « v o o v oot e e e e e 118
FOAL o o o e 118
EXAMPIES . . 0 o oo e e e 119
Related TOPICS .« o o v v v e e et e e e e e 119
CONNECT Command oo ot e e o e e et e e e e e e e e e e e e 120
DESCHPHON .« . o v o v v e o e et e e e e e e 120
FOIRAL .+ & o v v e e e e e e e e e e e e e e e e e e 121
Host Dependencieso oo e 122
Brampleso e e e e 123
Refated TOPICS . . . o o o o v e ot e e e e 123
CONTINUE Command . . . o o e v e e e e e e e e e e e e e s e 124
DESCHPLON .« o o vt ot e e e e e e 124
i 10 AT A 124
EXample . .. oot e 124
Related TODPICS . . . o oo v e et oo e e o e e e e 124
DISCONNECT Command . . -« o v o o et e e e o e e it e et e et e e e s 125
DESCHPHON . . o v v e ettt e e e e e e e e 125
o0 v S T 125
BRAMPIES . . . ot o e e e e 125
Related TOPICS 0 o v oo e e e 126
EXIT Command . . o o o e e et e e et e e e e e e e e e e e e e e e 127
DESCHPHON . . o o o ot e e e e e 127
FOMMAAL © o o o e 127
EXAMPIES .« . o o o o ot 127
Related TOPICS . . ¢ o o v it o e m e e e 128
GOTO Comimand . . . o o o o e e e e e e e e e e e e e e e e 125
DESCHPUON . . v o oot it e 129
FOMNAL . o o v e 129
EXAMPIES . . . o o oo e 129
Related TOPIES . .« o o o v o oo oo e e e 129
HELP Command . . . o o o o o e e e e e e e e e 130
DESCHPHON .« . o o et e et et e e e e e e 130

460377-02 : Contents page vii

EOmAL 130

pomples I 130
INPUT Command ..o 0L 132
peseripion .. 132
Fommal LI 132
pamples oI 133
selated Topics ... LI i34
FOEAL Command ... I 135
poseription LI 133
POMMAL « e 135
prrommational Qualifiers T DT 136
Bramplos I 136
Selated Topics 137
O Command o I 138
Deseription LI 138
ONERRor LI 138.

oy INTermupt oL 138
ONEOCal ermor . 138

ON REMote error ... oL 138
FOTMAL L 139
pamples L i39
fetated Topics L 140
OUIPUT Command 0 01100 [il 141
peseripton .. 141
PORmAl s 141
prormational Qualifiers 100 T 142
pamples e 142
Sgsed Topics ... 142
QUIT Command LI 143
poseription LI 143
EOMMAL LI 143
pmples LI 143
e Topies ... LI 144
RECEIVE Command 00 T 145
pesbrption ... 145
Format oo B 145
mxamples LI i45
Related Topics ' R 145
REMOTE Command [[]]1 [1 i 146
poseription ... 146
T S SR 146
mfommational Qualifiers L. D] II T I 147
BXAPlES - .. 147
Refated Topics ... I 147
SEND Command T 148
pesaription ... 148
ORI LI 143
pamples .. 143
Segued Topies ... 148
SET Command .. 149
pESCiption ... LI 149
EOTHRL LI 149
PSS L 150
efated Topics ... 150
SEFALIAS Command [ITIIIT I 151
peseription ... i51
FOMAL LI 151
post Dependencies ... DI 152
Ramples L 152
Related Topics ... 152

page viii Contents 460377-02

DESCHPHON . . . v v oo e v o e e 153
FODIMAL -« v v o v v e e e e e e e e e e 153
EXAMDIE .+ o o o e e e e e e 154
ReEIAtEd TOPICS .+ - -+« o v v e e e e s 154
SET HOST Command . . - -« « v v et e et oo e e e e a e i55
DESCHPHON .« o o v e e v e e e e e e 155
CFOIMMAL v v o e e e e e e e e e 155
BXAMPIES .« o v o v v e e 155
RElAted TOPICS . . . - o o v v oo oot e e e e e 156
SET VARIABLE Command . . - . .« . v oo vevo e v mme e m s 157
DESCHPHOI . . . - o o v oo e e e e 157
FOMMAL + v s v e 157
Bxamples oo e] 157
Related TOPICS . . -« v v v oov v et o s e e e 158
SHOW COmmMAand . . .« o v v v e et v e e e e e 159
DESCHPHOM . 4 v ove v v e s e e e e e e s 159
FOMMOAT .« + v v v o e e e e e e e e e e e e e e 159
EXATPIES . o % v v e e s e 159
Related TOPICS « « -« v o v oo oo e oo ae e e 159
SHOW ALIAS Comumand o oot e i e 160
TDESCHPUON . . . o o ce o e e e e e e e e 160
TFOMEAL - v o v e e e e e e e e 160
EXAMPIES © v o v o o e b e e e e 160
Refated TOPICS . - . v v v v ottt e e e cm e 160
SHOW GLOBAL Command« o oo v e o e oo e e o 161
DESCHPHON .« - v v v v v e e e e e e e e e 161
FOIIIAL .+ » o o e o e e e e e e e e e e e 161
EXAMPIES . . o o v v v oot e e 161
TREIAEd TOPICS .« « v v v v v e e e e e 161
SHOW HOST COMIMATA . .+ .« -« ot o e v e e e me oo m o e m e m e s oo e 162
DESCOPUOR .+ o o v v v e v v e e e e e e e 162
FOIMAT « o+ v v e e e e e e e e et et e e e e e 162
EXAMPIES . o o o vt e e e e e e 162
Related TOPICS . -« v v v v v v oo e e 162
SHOW QUALIFIER Command U S I 163
DESCHPLON .« o o o v v v v et e e 163
TOMMAT & o+ o o e e e e e e et e e e e e 163
BXAMPIES . o o o o o e et 163
Refated TOPICS . - o o v v oo o m ot e e 163
SHOW VARIABLE Command . . -« « v v oo v v o ie o mn s s 164
DESCHPLOM .« « o o o e e e e e v e m et 164
FOMMAL + o v v e e e e e e e e e e 164
EXAMPIES . o o o oo 164
Related TOPICS - -« v v v v e e oo m e e e e 164
TEXT Command . . . o v v o eem e e m e e e e e 165
DESCHPHOR - - - o v v v e e et e o e s e 165
FOMMAL .+ & o o e e e e e e e e e e e e e e e 165
EXAMPLES . o o ottt e e e e 165
Related TOPICS . o v o oo v v et e e 165
TRANSLATE COMMANA .« o o o v v e e v o e e e e oo e s s s 166
DESCHPUON . o« o o v v v e v e e e 166
FOMOAL & & o o o e e e e e e e e e e e e e 167
EXATAPIES . . . o o oo e e e e e e e e 167
Appendix A. USER-Access Error Messages for UNIXo 171
Additional DESCHPHONS . . . -« « v o vt v st e e 181
Appendix B. USER-Access 2.0 Release Notes For UNIX . . . e e e 187
Tew FEAUUTES. . & o o v v e e e o e e e e e e 187

460377-02 Contents page ix

' Enhanced USER-Access Commands: ... 188

O sembancements: . . L 10T 189
UNIX Specific Bnhancements . [[[T 190
Mex 191

Sign Up Sheet

Cemment Sheet

Figures
) DionAccess Architeoture ... 1
2. Diagram of a USER-Access Connection Sequence [1l TTTi 2
3 130 Model Communication .. I e 4
S Neweiwandthe IO Model . [/ /1111 5
> Nested String Substitution [T IR 75
6. Sample Command Scripe|][1T A 98
7. Traditonal packup LI 103
8. Central Arehiving eI 103
o Daedite and Central Sites ... L1111 105
 semCemter ..o DIIIIT I 107
11. Sample Central Site JCL (Command Procedure} O 108
12,

Sample Satellite Site UNTX SedptFile ... Il 108

page x Contents 460377-02

Introduction

USER-Access Overview

The Network Systems® USER-Access™ software is a user interface to Network Systems
NETwork EXecutive (NETEX®). It provides the ordinary user with a means to move and
manipulate files across a HYPERchannel® network using simple, easily remembered com-
mands. In addition, USER-Access provides extensive interactive help files so the user can
become familiar with USER-Access.

USER-Access provides several advantages to network users. Among these are:

User-friendly - Once USER-Access is installed, you can transfer files and exercise other
USER-Access functions in very little time and with little training.

Tailorable - The USER-Access interface can be tailored to meet your needs at the host and
the user levels. Default values can be set, aliases defined, etc., in site- and user-input files
that are read by USER-Access when it is invoked.

Common Interface - The USER-Access user interface is the same on all hosts. While the
definition of a command may change from one host to another, the command remains the
same to you.

Security - USER-Access uses the host computers’ logon routines to provide security. You
must be a valid user on both the local and the remote systems to access them. Some
systems may allow a guest account, but this can be restricted by the security needs of the
network.

Figure 1 shows the arrangement of USER-Access and NETEX. The design of USER-Access
allows for expansion as its use increases. Possible expansion includes queued file submission,
electronic mail, and similar applications.

Interactive Central Terminal Expansion
Interface Archiving} [Emulation

USER - ACCESS TOOLS

NETEX

Figure 1. USER-Access Architecture

460377-02 Introducton page 1

How USER-Access Works

service module (2), which then offers a service and notifies the Service Initiator (3). The
Service Initiator module then returns a message to the Initiator and disconnects to wait for
another incoming request (4). The Initiator then reconnects directly to the Service Module (5).
The connection between the initiator and the Service Module is maintained until terminated by
a comnmand or a system timeout.

FULL FUNCTION

INITIATOR RESPONDER
(1) Request for Service
STrvice —— Initiator
(2}, (4)
(5) = Service
(3) Module

Figure 2. Diagram of a USER-Access Connection Sequence

Introduction to USER-Access and UNIX

The spread of the UNIX and Berkeley 4.x BSD has allowed the UNIX interface to
USER-Access to be standardized and presented as the Hxx3 USER-Access product. This

manual describes the USER-Access software for a UNIX host running the appropriate version
of NETEX.

USER-Access is a software product designed to simplify network communications, By
reducing the interface to a set of simple commands (CONNECT, SEND, RECEIVE, DIS-
CONNECT, etc.) network capabilities have been expanded to include the nontechnical user.

There are three versions of USER-Access available for each configuration:

* Full function (designated Hxx3F) is the complete USER-Access package. The user inter-
face allows it to request services from other full function or responder USER-Access
implementations, to perform file transfers, and to submit remote commands. The full

function service wiil also accept requests from other full function and initiator
USER-Access servers. '

* Initiator service (designated Hxx3I) provides a user interface for requesting services from

either a full function or responder service USER-Access. The user interface is the same as
the full function service.

page 2 Introduction 460377-02

+ Responder service (designated Hxx3R) responds to requests from either full service or initi-
ator service modules. There is no user interface to this type of USER-Access. '

As a result, there are three possible USER-Access products for UNIX Systems. Where appli-
cable, these products will be referred to as H263, H263F, H2631, and H263R.

Introduction to USER-Access and NETEX

Network Systems USER-Access facility is a software package that extends file transfer capabil-
ities to the less technical end-user. USER-Access has easy-to-use commands that direct
NETEX software to make connections, transfer files, and carry out related activities.

The NETEX and USER-Access families of software products are used with HYPERchannel
hardware to enable two or more application programs (which may be on different host com-
puters) to communicate with each other at multimegabit speeds. The NETEX family of soft-
ware consists of different versions of NETEX for use with different operating systems, such as
DEC, Sun, Apollo, or IBM. Network Systems also has utility programs available for use with
NETEX, such as USER-Access, which simplifies the user interface to an even greater degree.

The NETEX software resides as a stand-alone, real-time program within each host involved in
the connection. As an independent program, NETEX allows communpications to take place at
any time during host operations, independent of other functions in the system. USER-Access
can be used with host-based NETEX and Co-Processor (CP) NETEX. The following sections
describe USER-Access, these two NETEX products, and how NETEX uses the Intemational
Standards Organization (ISO) guidelines for open systems interconnection.

USER-Access, NETEX and the ISO Model

In creating USER-Access and NETEX, Network Systems followed ‘the guidelines set by the
International Standards Organization (ISO) for Open Systems Interconnection. Open Systems
Interconnection refers to the exchange of information among terminal devices, computers,
people, networks, etc., that are open for communication with one another.

The ISO model is composed of seven layers. USER-Access forms the application (or user)
layer and the presentation layer of the ISO model. Each of the seven layers interact only with
the adjacent layers in the model (see Table 1). By using this modular structure, the internal
function of each layer is self-contained and does not affect the operation of other layers.

Table 1. ISO Model
Layer Major Functions
Application High level description of data to be transferred and the destination
involved
Presentation Select data formats and syntax
Session Establish session connection, report exceptions, and select routing
Transport Manage data transfer and provide NETEX-to-NETEX message delivery
Network Point-to-point transfer, error detection, and error recovery
Data Link Data link connection, error checking, and protocols
Physical Mechanical and electrical protocols and interfaces

460377-02 Introduction page 3

Although each layer physically interacts only with adjacent layers, each layer appears to com-
municate directly with the corresponding layer of the other model. Figure 3 on page 4 illus-
trates this concept.

Application |eecommmmooo . *| Appiication
Presentation |-ew—eeee oo _________ - Presentation
Session e e e e maa *| Session
Transport e e e e e e *! Transport
Network e . ! Network

Data Link e e e e e e »>| Data Link
Physical e e e e e »| Physical

Physical Media (HYPERchannel) -

Figure 3. ISO Model Communication

Notice that the corresponding layers appear to communicate directly as indicated by the
dotted lines, but actually they communicate only by progressing down through the layers of
one model, through the physical media, and up through the layers of the other model.

As shown in Figure 4 on page 5, HYPERchannel hardware and firmware form the lower two
layers. NETEX and the user's operating system comprise the next three layers. (NETEX
software provides complete session and transport layer services, plus a network interface at the
driver level.) This leaves the user free to use Network Systems utilities or write the application
programs for use with NETEX. USER-Access completes the model by providing presentation
and application level software.

page 4 Introduction 460377-02

N- LAYERS

7 APPLICATION
USER-Access
6 PRESENTATION
N 5 SESSION
E
T
E
X 4 TRANSPORT
HOST sublaver
> 3 NETWORK
Host 0/S DRIVER sublayer
HYPER- 2 DATA LINK
channel
firmware
and
hardware i PHYSICAL

Figure 4. NETEX and the ISO Model

Sample UNIX USER-Access Session

This section gives a very brief example of a few of the functions that can be accomplished
during a USER-Access session. This sample session is meant to be only a simple introduction
to USER-Access and how it may appear to the local UNIX user. The sections following this
provide a more detailed look at the product and its features. Users that have never seen
USER-Access may spend a couple of minutes following through this sample session. Users
that are familiar with the product may skip directly to the next section.

To invoke USER-Access, the user command is entered from the UNIX command line as:

$ user
User>

The returning prompt in this sample session is User>, although USER-Access may be config-
ured to return another prompt. The prompt informs the user that USER-Access is waiting to
accept a command.

A connection to any host in the network that is running USER-Access can be made using the
LOGIN command. The LOGIN command below establishes a connection with an IBM MVS
host named ‘MVSXA’ (in the Network Configuration Table). LOGIN prompts the user for

460377-02 Introduction page 5

various login information such as remote username and password which it uses to establish a
secure login to the remote host. The LOGIN output returned is based on the host and
username to which the connection is made. The connection is completed when a
USER-Access prompt appears. Notice that in this session, USER-Access has been configured
to prompt with the name of the remote host MVSXA.

User> login

Hostname? mvsxa

Username? guestl

Password?

Qualifiers?

User: Connected to service 'USER’ on host 'MVSXA'.

GUESTY LOGON IN PROGRESS AT 15:47:27 ON JURE 1, 1989
NO BROADCAST MESSAGES
READY

User: Logged in as user 'guestl’.
MYSXA>

If a connection fails, an error message is displayed. The error generally begins:
User: Failed to connect service 'USER' on host 'MVSXA' (UA-4185).

This is followed by either a NETEX message or a remote system error message. If the
'MVSXA’ host is not in the Network Configuration Table (NCT), for example, an error
similar to the following would appear:

User: Host 'MYSXA' does not exist in configuration (UA-864).
User: Host is not in the configuration (NETEX-3506) .

If the username, password combination was invalid, an error such as the one below would be
seen;]

User: Failed to connect service 'USER' on host 'MVSXA' (UA-4105).
User: Remote: Login failure.

Of course, since all logins are made through the security system of the remote host, the error
message actually seen by the user will depend on the host to which the connection is being
made.

Following a successful login as above, a SHOW HOST command can be used to display all
remote host connections held by this USER-Access session. Each session can support up to
ten host connections. The command below reveals just one remote host connection. The
connection displayed is the one just established by LOGIN at the beginning of this session.

MVSXA> show host

User:

User: active --> (1) Host=MVSXA User=guestl
User;

MVYSXA>

Once a connection is established, a SHOW REMOTE command can be issued to return useful
information about the connection and the remote USER-Access host. From the list below, for
example, it can be seen that the remote host character code is "EBCDIC’, the default directory
(or TSO/E Prefix), is ‘GUESTY’, and the USER-Access version number is 2.0 8905 R1 M1".

page 6 Introduction 460377-02

MVSXA> show remote

User:
User:
User:
User:
User:
User:
Useyr:
User:
User:
liser:
User:
User:
User:
User:
User:
User:
User:
User:
User:

*
*
*
*
*

*

*
*
*

BLOCKsize
DIRectory
HOST sivvvnnnen

HOSTCODE

PRODuct
QUIet
SERvice
STATUS +ocvuunn
TRANS1ate
TSOPREFTiX vvuws

LR

LR

LR

IR R

cen s

* USERNAME vvvuanvess
* VERSION o.vvvnvnees

* Informational qualifier {cannot be modified).

MVSXA>

16384
GUEST1
MVSXA

. EBCDIC

MVS
OXFIFBBOAEG358
MVS:

UAZ213

off

USER

Hetex
GUEST1
guestl
2.0 8965 R1 M1

Similar information can also be displayed about the local UNIX host by issuing the SHOW
LOCAL command. Note here that the local character code is ‘ASCII7’, the current local
directory is /GUEST’, and the local version of USER-Access is “2.0 8905 R4 M{'".

MYSXA> show local

User:
User:
User:
User:
User:
User:
User:
User:
User:
User:
User:
User:
User:
User:
User:

*
*

* Informational qualifier (canmot be modified}.

MYSXA>

DiRectory
HOSTCODE

HOSTTYPE

INTeractive ...
PID tievennnnss

PRODuct
QUIet covevnens
SHELL vvovuvusen
STATUS .vovvene

YERSION venues

'R

R

A

e

LI]

[quest
ASCII7
UNIX
off
1924
Unix:
UAxx3
of f
/binfcsh

2.0 8905 R4 M

Once a connection is established to a remote host, users can issue commands to that host using
the REMOTE command. The example below issues REMOTE LISTCAT (an IBM MVS
TSO/E command) which says to return a directory listing of files that reside on the remote
host in the current default directory. Notice that a host specific prefix appears in the left hand

column indicating the resulits are being returned from the ‘MVS’ host.

MVYSXA> remote listcat
MVS: IN CATALOG:CAT.MVS3.7S0
MVS: GUEST1.BATCH.DATA
MVS: GUEST1,BATCH.JCL
MYS: GUESTL.MVS.PDS
MVS: GUEST1.SAMPLE.C
MVYSXA>

460377-02

Introduction

page 7

A major feature of USER-Access is its implementation of a Host Independent Command set.
Host independent commands allow a user to issue similar commands on all hosts around the
network, without having to learn each host’s native command set. The command in the
example above can be issued again, but this time using the Host Independent Command
DIRECTORY. USER-Access simply maps DIRECTORY to the IBM MVS LISTCAT
command. Now network users need only learn one network-wide command set. This
command set can be the USER-Access default one or one that the site defines. Below is a
second pass at a remote directory listing, but this time using the Host Independent Command
REMOTE DIRECTORY.

MVSXA> remote directory

HVS: IN CATALOG:CAT.MVS3.TSO
MVS: GUEST1.BATCH.DATA

MVS: GUEST1.BATCH.JCL

MVS: GUEST1.MVS.PDS

MY5: GUEST1.SAMPLE.C -
MVSXA>

Local UNIX commands or local Host Independent Commands can also be executed from
within USER-Access using the LOCAL command. Iere, a local directory listing is given
(using the Host Independent Command DIRECTORY), showing all files in the loca] user’s
current directory. The prefix in the left hand column now reflects the local host’s type Unix.

MVSXA> Jocal directory
Unix: total 20

Unix: drwxrwxrwx 2 root 2048 May 26 15:15 .

Unix: drwxrwirwx 57 bin 2048 May 24 18:31 .,

Unix: -rwxr-x--x 1 guest 2433 May 24 80:08 ,cshre
Unix: -rwxr-x--x 1 guest 257 May 24 00:89 .login
Unix: -rwxr-xr-x 1 guest 2291 May 23 23:45 message.,unj
Unix: -rwxr-xr-x 1 guest 109 May 23 23:45 monday . uni
Unix: -rw-rw-rw- 1 guest 967 Apr 27 20:10 move.fil
Unix: -rwxr-xr-x 1 guest 217 May 23 23:45 tuesday.uni
HVSXA>

To transfer a file from the local host to the remote host, the SEND command is used. The
example below sends the file move.fil from the current local directory fguest on the UNIX
host, to the current remote directory (or TSO/E Prefix) GUESTI on the IBM MVS host.
Since all USER-Access commands can be pre-defined with reasonable site defaults, the typical
user would just type SEND followed by the source file name. The status line indicates the file
has successfully been transferred. Notice that USER-Access uses the source file name to create
a default destination file name when one isn't specified.

MVSXA> send move. fil

User: Source Destimation Size
U er t me o o , E
User: /guest/move.fil GUEST1.MOVE.FIL 967
MVSXA>

With USER-Access it is also very easy to transfer a group of files using a single command.
The example below sends all of the local files having an extension of ‘UNI’ to the remote IBM
MVS host. Per the user’s request, the files are stored in a single IBM Partitioned Data Set
(PDS) as individual members MESSAGE, MONDAY, and TUESDAY. If any file transfer
CIrors were encountered, they would be displayed in place of the status line below.

page 3 Introduction 460377-02

MYSXA> send *.uni uni.pds(*)

User: Source Destination Size
USEr: =-mmamececcmcccmccscsenarcun e mememsceAeeeSsmssSSes=mE=ems S oma———
User: /guest/message,uni GUEST1.UNL.PDS(HMESSAGE) 2291
User; /guest/monday.uni GUESTL.UNI.PDS{MONDAY) 169
User: /guest/tuesday.uni GUESTL. UNI.PDS (TUESDAY} 217
MVYSXA>

A quick REMOTE DIRECTORY will act as a second verification that the files have indeed
been transferred. Note the new files MOVE.FIL and UNLPDS below.

MVSXA> remote directory

MyS: IN CATALOG:CAT.MVS3.TSO
MYS: GUESTL.BATCH.DATA

MVYS: GUESTL1.BATCH.JCL

MVS: GUEST1.MOVE.FIL

MVS: GUEST1.HVS.PDS

MVS: GUEST1.SAMPLE.C

MVS: GUEST1.URI.PDS

HVSXA>

File transfer is just as easy the other direction. To move a file from the remote host to the
local host, use the RECEIVE command. The example below transfers the file SAMPLE.C
from the IBM MVS system to the local UNIX host.

HVSXA> receive sample.c

User: Source Destination Size
=T L S bt e L L DL L e
User: GUEST1.SAMPLE.C /guest/sample.c 107
MYSXA>

This transfer can too be verified by viewing a LOCAL DIRECTORY listing.

MVSXA> local directory
Unix: total 22

Unix: drwxrwxrwx 2 root 2048 May 26 15:16 .

Unix: drwxrwxrwx 57 bin 2048 May 24 18:31 ..

Unix: -rwxr-x--x 1 gtest 2433 May 24 00:088 .cshrc
Unix: -rwxr-x--x 1 guest 257 May 24 00:09 .legin
Unix: -rwxr-xr-x 1 guest 2291 May 23 23:45 message.uni
Unix: -rwxr-xr-x 1 guest 109 May 23 23:45 monday.uni
Unix: -rw-r-rw- 1 guest 967 Apr 27 20:10 move.fil
Unix: -rw-rw---- 1 guest 167 Jun 61 15:48 sample.c
Unix: -rwxr-xr-x 1 guest 217 May 23 23:45 tuesday.uni
MySXA>

To force a disconnection from all remote hosts (in this case the IBM MVS host), the EXIT
command is used. EXIT insures a smooth shut down of network activities as well as local and
remote files. EXIT also returns a USER-Access session status that can be interpreted by the
local UNIX host. This status is especially useful when USER-Access is used within a batch
job.

HYSXA> exit
3

460377-02 Introduction page 9

To keep this sample

show_n. owever, since only a small fraction of USER-Access_ has been described here, the

page 10 Introduction

460377-02

UNIX Local User’s Guide

Introduction

This section is intended for UNIX users that would like an introduction to USER-Access and
some of its features. This section explains how to invoke USER-Access from a UNIX ter-
minal, what a USER-Access session looks like, logging in and transferring files to a remote
host on the network, and executing commands on a remote host. Users are encouraged to
refer to the “Advanced Local User’s Guide” on page 47 for a more in depth look into
USER-Access. Users should also refer to the “Remote User’s Guide” for the remote host in
which a connection will be made for additional information about that host’s environment.

Invoking USER-Access in UNIX

USER-Access is invoked using the following general format:

user [input-file {argumentl, argument2, ...]] [-keyword value]

Where:

user is the command to invoke USER-Access. It is possible that this command may con-
flict with another UNIX command or symbol already set up at a particular site. If
that is the case, usera is the suggested alternative command that may be set up at
installation time. If USER-Access is not invoked by either of these commands,
contact the site administrator.

input-file is an optional USER-Access input or script file containing USER-Access commands
that may be read and executed. When USER-Access completes execution of the
input file the session terminates and the UNIX system prompt is displayed.

argumentl, argument2, ... are optional arguments that may be passed as parameters to the
input file. Multiword arguments should be enclosed in double quotation marks.

-keyword value (optional) specifies optional command line keywords that may be given to
affect operation of the USER-Access session. The following are valid keywords:

-GLObal specifies the size in bytes of the global variable environment. The default
value is 3000 bytes which should be adequate umless a user session
attempts to define a large number of global variables, in which case the
GLOBAL switch can be used to increase the space available for global
variables.

-HOMZEdir specifies the name of the user’s “login” or “home” directory when
USER-Access is invoked. Changing this keyword’s value redefines the
location USER-Access uses to locate user startup files.

-OUTput specifies the name of an output file that is to receive the output from this
session.

460377-02 UNIX Locai User’s Guide page 11

-ROOTdir specifies the name of the installed USER-Access root directory con-
taining the site specific initiator, help, and startup files. There is generally
no reason to modify this keyword.

-SEArch specifies the search path USER-Access follows to locate local initiator
startup files. SEARCH is described in more detail in “Local UNIX
USER-Access Startup Files”.

-SERvice specifies an alternative default CONNECT SERVICE name. The default
its “"USER”,

USER-Access is invoked for interactive use by typing user at the UNIX system prompt:

$ user
User>

The USER-Access prompt in the example above is User>, although USER-Access may be con-
figured to prompt with a different string. The prompt means that USER-Access is ready to
accept commands.

Local UNIX USER-Access Startup Files

When USER-Access is invoked, it attempts to read two startup files on the local host: a site
startup file located in the USER-Access root or (SITE) directory called sclient.ua, and a user
startup file located in the user’s login directory called client.ua. The site startup file is read
first, then the user startup file is read. Neither of the startup files is required.

The startup files consist of USER-Access commands. Typically a site administrator will create
the site startup file to define basic aliases for general users. The user startup file provides
more sophisticated users with a way to define custom aliases and qualifier defaults. User
startup files make it possible to override defaults in the site startup file. For example, a simple
startup file could contain the lines:

* My startup file (this is a comment Tine)
+*

set alias 1d local directory
set alias rd remote directory
set local prefix MYHOST:

This startup file creates two USER-Access aliases for displaying the local and remote directory
listings, Id and rd respectively. It also sets the default USER-Access local prefix to be
MYHOST:. After USER-Access is invoked, these new definitions will be read in, whether they
are in the site startup file or the user startup file, and become available to the user as soon as
the USER-Access input prompt appears.

It is possible to invoke USER-Access by declaring alternative startup files. This is done using
the SEARCH qualifier on the command line when USER-Access is invoked. By default,
SEARCH is defined as (SITE) (USERY". By implication, this reads scliens.ua from the local
USER-Access (SITE) directory and then client.ua from the user's login directory, in that order.
The order can be changed, other file names may be specified, or the special SEARCH keyword
(NONE) can be used to override the default. Refer to “UNIX USER-Access SEARCH
Keywords (SITE), (USER), and (NONE)” on page 93 for more information.

page 12 UNIX Local User’s Guide 460377-02

Remote USER-Access Startup Files

In addition to the local startup files, there are equivalent remote startup files that the
USER-Access Responder on the remote host returns to the local Initiator following a suc-
cessful connection. By default, both a site and user startup are read, but this can be over-
ridden by the CONNECT command’s SEARCH qualifier. Following a network connection,
these startup files, if they exist, are sent back to the Initiator to be processed. They are not
executed on the remote host. (For security reasons, the following commands may not be exe-
cuted from a remote server startup files CONNECT, DISCONNECT, LOCAL, RECEIVE,
REMOTE, and SEND.) Any aliases defined in these files become available to the local user.
This is important in that a USER-Access alias defined in the remote startup file will override
an alias that has been previously defined in the session. Whether or not this is desirable
depends upon the situation; care must be taken when defining aliases in a remote startup file.

The exact name and location of the remote startup files depends on the remote host in which a
connection is being made. Refer to the manual for the remote host for more information.

Getting Started

Once the prompt appears, it is time to begin giving commands to USER-Access. This section
will present some basic concepts that are an important foundation for understanding the
details of USER-Access.

USER-Access Commands and Command Qualifiers

A USER-Access command can be invoked anytime the command line prompt appears. Com-
mands may be fully spelled out or abbreviated. The minimum spelling of any command is the
first ‘n’ capital letters of the command name. Abbreviations for each command are shown in
“Command Descriptions” on page 117.

Several of the USER-Access commands have qualifiers or keywords associated with them. A
command’s qualifiers can affect how a command responds to a user, the performance of a
command, and the flexibility of a command. Most of the qualifiers have default values
already associated with them. The novice user need not be concerned with overriding or re-
defining these values. The sophisticated user can use the qualifiers to modify commands, often
making the commands more powerful for an application. There are two methods for changing
the values of qualifiers:

1. A qualifier can be re-defined to assume a new default value by means of the SET
command.

2. The current value of a qualifier can be overridden by specifying a new value on the
command line. This is accomplished by using the special character dash *-* followed by
the qualifier and it’s new value.

Command qualifiers are similar to USER-Access commands in that they may be abbreviated.
The minimum spelling of any qualifier is the first ‘'n” capital letters of the qualifier name.
Abbreviations for each command qualifier are shown in “Command Descriptions” on
page 117. For instance, the minimum spelling of qualifier CREate is CRE.

460377-02 UNIX Local User's Guide page 13

Displaying the Valid Qualifiers for a Command

A list of valid qualifiers for a particular USER-Access command can be obtained with the
SHOW QUALIFIER command. The list also includes a brief description of each qualifer.
For example, to display the list of valid qualifiers for the INPUT command, type:

User> show qualifier input

User:

User: CONTinue continue on error (on/off)

User: ECHO echo input to terminal {on/off)

User: PROMPTZ secondary prompt for input continuation
User: PROMpt prompt string for USER input

User: SEArch search path for default INPUT commands
User: VERify verify string/alias substitution (on/off)
User:

Displaying the Current Value of a Qualifier

The SHOW command is used to obtain a listing of the current values for a command’s qual-
ifiers. For example, a listing of the SEND qualifier values is displayed by entering:

User> show send

User:
User: CRCoenvnnns. off
User: (CREate new

User: * DIRectory:LOCal ... locdir_vatue
User: * DIRectory;REMote .. remdir_value

User: FLOWcccvv.... of f

User; MAXRECord value
User: MODe character
User: PARTialrecord on

User: QUIet ,............ of f

User:

User: * Informational qualifier (cannot be modified).

The qualifier name appears in the left hand column and its value appears in the right hand
column. In this example, the value of qualifier CREATE is currently set to ‘new”. Qualifier
QUIET is turned “off". Notice that some qualifiers are flagged as “informational qualifiers”;
these are shown along with the SEND qualifiers but are not controllable in the same way.
They appear because they provide information important to the command and the one using
it. Qualifiers flagged as informational cannot be modified. (DIRectory:LOCal and
DIRectory:REMote, shown above, may be modified using SET LOCAL DIRECTORY and
SET REMOTE DIRECTORY respectively. The SEND and RECEIVE commands list them
as informational qualifiers since they are used to direct file lookup for file transfers.)

An individual qualifier’s value can be examined by using the SHOW command followed by the
command name and qualifier name. For instance, the current value of the INPUT PROMPT
qualifier can be shown by entering;

User> show input prompt
User: PROMpt User>

page 14 UNIX Local User's Guide 460377-02

Setting a Command Qualifier

Use the SET command to re-define the value of a qualifier for a command for the duration of
the USER-Access session or until it is changed again using the SET command. For example,
to change the default RECEIVE file transfer mode to STREAM, modify the MODE qualifier
of the RECEIVE command:

User> set receive mode stream

The RECEIVE file transfer mode now will default to STREAM until the qualifier MODE is
re-defined. The change can be verified with the command:

User> show receive mode
User: MODeo00000e stream

Some command qualifiers, such as INPUT qualifiers CONTINUE, ECHO, and VERIFY, are
Boolean qualifiers: their values are either ON or OFF. To set a Boolean command qualifier
to ON, enter:

User> set command qualifier on
or
User> set command qualifier
For the INPUT qualifier ECHO, this would be:
User> set input echo on
or
User> set input echo
For Boolean qualifiers, a missing value is interpreted by USER-Access as ON.

Besides string and Boolean qualifiers, there are also Integer qualifiers. These qualifiers, such
as BLOCKSIZE, LINES, and TIMEOUT, accept only Integer values and often have numeric
range checks associated with them. Integer qualifier values may be appended with a ‘K’ (2'°)
or ‘M’ (2%) multiplier. For example, to set the CONNECT BLOCKSIZE qualifier to 16 kilo-
byvtes, the following may be entered:

User> set connect blocksize 16k
Note that the value of any qualifier can be overridden by a qualifier specified on the command
line.
Overriding a Command Qualifier

The qualifiers that can be defined with the SET command (all noninformational qualifiers),
can also be overridden on the command line. For example, if the current RECEIVE file
transfer mode is STREAM, it can be overridden for a single transfer by entering:

User> receive -mode character sourcefile

This command does not change the default value of the MODE qualifier, it simply overrides
the default value for the duration of the command. Therefore, the file ‘sourcefile’ above
would be transferred in CHARACTER mode while the default value of RECEIVE qualifier
MODE would remain STREAM. This can be verified with the command:

460377-02 UNIX Local User's Guide page 15

User> show receive mode
User: MODe

When forcing a Boolean qualifier to O
For example, the commands shown belo

User> send -quiet on sourcefile
User> send -quiet sourcefile

USER-Access interprets the missing

Online Help

Built into USER-Access is an online hel
on a particular command or topic.

comumand qualifiers, qualifier default
USER-Access help display,

User> heip

use the HELP ¢

The general, or to
obtained. For instance, one of the hel
LOCAL. To get additional help on the L

User> help local

p-level help display will include additional to

N from the command line, the value ON is optional,
W are equivalent.

Boolean value to be ON, even if the default value is OFF.,

p facility that makes it easy for a user to obtain help
The help facility also returns useful information on
s, and command examples.

To obtain a general
ommand as follows:

pics in which help can be

p sub-topics will be the USER-Access command
OCAL command, one would type:

To get help on qualifiers for the LOCAL command, one would type:

User> help local qualifiers

It is important to note that some help
remote connection is re
the HELP command in

quired in some cases

mformation resides on remote hosts.

“Command Descriptions”

Therefore, a
"HELP SEND QUALIFIERS’). Refer to
on page 117 for more details.

(such as

Controlling USER-Access Input and Output

The USER-Access commands INPUT a
control a majority of the user-
various qualifiers,
processing even if
a local file, etc. This section very briefly
control USER-Access I/O.

By typing SHOW INPUT, the user can g
current values:

User> show input

User:
User: COMTinue off
User: ECHO of f
User: PROMPT2 ,.......... More>>
User: PROMpt User>
User: SEArch
User: VERify of f
User:

page 16 UNIX Local User's Guide

nd OUTPUT, along with thei
oriented input and output within USE
users can change the USER-Access prompt, tell USER-Access t
an error occurs, cause out

r respective qualifiers,
R-Access. By setting
O continue
put to be held after each page, save the output to
discusses some of the things that can be done to

et a hist of all INPUT qualifiers along with their

460377-02

Each of these qualifiers is explained in detail in “Command Descriptions” on page 117 under
the INPUT command, along with examples of its use. Very simply, the SET command is used
to modify any of the qualifiers. For instance, to change the USER-Access prompt from USER>
to MY-PROMPT:, type the following:

User> set inpul prompt "MY-PROMPT: *
HY-PROMPT:

Notice that the prompt for the next command has now changed to MY-PROMPT:. To tell
USER-Access to continue processing within an input script or alias (discussed later) even after
an error results, turn on the CONTINUE qualifier by entering:

User> set input continue on

Users can affect the output as it is returned from USER-Access by modifying OUTPUT qual-
ifiers. To look at the available qualifiers for the OUTPUT command, type SHOW OUTPUT.:

User> show output

User:

User: COLuUmMNSvcovnne 80

User: * DESTination

User: FORmat {msg("text™)} ({msg("facility")}-{msg{"code”)}).
User: HOEDc.ecuu.. off

User: INTernal off

User: LINes ..vevevivunas 24

User: PREFIX ..cvevicnnas User:

User: QUIet ...ovveuvncas off

User: TRUNcatecceus off

User:

User: * Informational qualifier (cannot he modified).
User:

Each of these qualifiers is explained in detail in “Command Descriptions” on page 117 under
the OUTPUT command, along with examples of their use. As with the INPUT qualifiers, the
SET command can be used to modify any of the QUTPUT qualifiers. For example, to tell
USER-Access to pause every 24 lines (the current value of the LINES qualifier), turn on the
HOLD qualifier with the following command:

User> set output hold on

This will prevent general USER-Access output from scrolling off the screen. To modify the
number of lines per screen to twenty, change the LINES qualifier:

User> set output lines 26

The QUTPUT command itself can be used to capture the results of 2 USER-Access session to
a file. This is done by typing OUTPUT followed by a file name. In addition, the user’s input
can be captured by turning on the INPUT ECHO qualifier:

User> set input echo on
User> output tmpfile

Following this command sequence, all input and output for this session is directed to the file
named tmpfile. If the ECHO qualifier was not turned on, only the command results (output)
would be captured. More information concerning INPUT and QUTPUT can be found in
“Advanced Local User's Guide” on page 47 of this manual. This facility is particularly useful

460377-02 UNIX Local User's Guide page 17

as a means of providing information to Network Systems’ technical support personnel
regarding questions and problems.

USER-Access Error Messages

USER-Access provides a friendly user interface across many different host types. This
includes error messages that are easy to understand. Error messages returned by USER-Access
consist of at least a USER-Access level error message followed by an optional host specific
error message. All error messages also have an associated error code that can be used to
locate additional information in the error message appendices.

An example of a simple “Invalid command” error follows:

User> xxxxxx
User: Invalid command 'xxxxxx' (VA-4708) .

The error text is straightforward. The error code (UA-4708) indicates the error is a general
USER-Access error with error number 4708,

The next example demonstrates an error resulting from a SEND command that contains a
general USER-Access error followed by a host specific USER-Access error and finally an
operating system specific error:

User> send badfile

User: Failure during CHARACTER mode send (UA-5001) ,
User: Failed to access file 'badfile’ (UA123-8392) .
User: 0S5 - file not found (0S-18012).

The first error code (UA-5001) indicates that this is a general USER-Access error (UA) with
an error number of 5001. The second error code (UA123-8302) says the error is from
USER-Access (UA), but generated by the USER-Access product nnmber 123 (or more exactly
HI123). The actual error number is 8302, The last error code (0S-18012) indicates the error is
generated by the operating system (OS or whatever the operating system name might be), with
the operating system error number of 18012. The USER-Access error messages are listed in
Appendix A, “USER-Access Error Messages for UNIX” on page 171 and in similar appen-
dices in other USER-Access manuals. The general USER-Access errors can be found in any
manual. The product specific errors are in the manual for the product indicated by the
product number (e.g. UA123 is product H123), Refer to the manuals for the operating system
for system-specific messages.

It is important to note that a site has the ability to change the error message format and it
may not exactly match the examples above. There are, however, three main pieces of informa-
tion for each message: the message text, the facility generating the message, and the error
number. This information should be casy to decipher. If not, see the site administrator.

page 18 UNIX Local User’s Guide 460377-02

Aliasing

Much of the versatility USER-Access offers for users is based on a very powerful script-
processing or alias capability. Users of the product benefit from aliasing by having special
commands, or aliases, defined for them. While a detailed description of the facility is provided
in “Advanced Local User’s Guide,” this brief discussion is provided to give a general famili-
arity of aliasing without getting lost in detail.

Aliasing provides a means of creating a custom command set for a user or group of users. An
alias is nothing more than a new name for a USER-Access command or set of commands.
Aliases are useful for creating “shorthand” commands for complex or frequently used
USER-Access command sequences. The simplest aliases are one for one translations of an
alias name and a USER-Access command. For example, if the user is accustomed to typing a
question mark to obtain help in a given application, an alias can be defined very easily using
the SET ALIAS command to map ‘Y to HELP. The new alias may then be viewed with the
SHOW ALIAS command.

User> set alias 7 help
User> show alics ?
User: 2cvvnnnn HELP

Now, instead of typing HELP to obtain help information, the user can just type ‘¥ at the
USER-Access prompt. The commands are considered equivalent by USER-Access. Below is
the definition of a much more complicated alias called EDIT which allows a user to use a
familiar local editor to edit a remote file:

User> set olias EDit {} -

More>> receive -mode character {1} edit.tmp !

More>> local -intergctive myeditor edit.imp !

Hore>> send -mode chargcter -create replace edit.tmp {I} !
More>> local delete edit.tmp

The basic procedure of the EDIT alias is to transfer the remote file to the Jocal host
(RECEIVE), edit the temporary file using the local editor (LOCAL -INTERACTIVE
MYEDITOR), send the file back to the remote host when the edit is complete (SEND), and
finally delete the temporary file (LOCAL DELETE). The exact syntax and special characters
used to define the alias are explained in detail in “Developing USER-Access Scripts Using
Input Files and Aliases” on page 76.

To use the alias, the user simply invokes it from the command line like any other
USER-Access command. For example, to edit an existing file on the remote host called
MYFILE, you type:

User> edit myfile

USER-Access takes care of the rest. Even though several USER-Access commands are
required to actually edit a remote file, the user sees it as a simple EDIT command. This is the
real advantage to aliasing.

To display the definition of the EDIT alias, the SHOW ALIAS command is used:

User> show aliogs edit

User: EDit receive -mode character {1} edit.tmp

User; local -interactive myeditor edit.tmp

User: send -mode character -create replace edit.tmp {1}
User: local delete edit.tmp

460377-02 UNIX Local User's Guide page 19

Aliases created within an interactive session are lost when the session is terminated. To create
aliases that can be used from session to session, they must be defined within a USER-Access
input or script file, or within a site or user startup file which are read automatically when
USER-Access is invoked. Refer to “Developing USER-Access Seripts Using Input Files and
Aliases” on page 76 for a detailed description of aliasing.

Terminating a USER-Access Session

To end an interactive USER-Access session type EXIT:
ser> exit

EXIT will disconnect all connections to remote hosts and terminate the current USER-Access
session. Any local or remote files that had been opened will be closed. The QUIT command
also may be used to terminate an interactive session. Refer to “Command Descriptions” on
page 117 for more details on EXIT and QUIT.

Establishing a Connection to a Remote Host

In order to transfer files or execute commands on another host, a network connection must be
established. This connection provides a link between the USER-Access Initiator on the local
host and the USER-Access Responder on the remote host. There are two ways to make a
connection to a remote host, the CONNECT command and the LOGIN alias.

Using CONNECT to Establish a Connection

The CONNECT command allows a user to establish a session on a remote host. The basic
format of the command is:

Command Parameters :
CONnect host userid password [parameters]
Where:
host is the name of a remote host as defined in the local host’s Network Configuration

Table (NCT).
vserid is the user name or id describing a valid user account on that host.
password is the associated password needed to login to userid.

parameters indicates additional parameters that may be required by the remote host at login
time,

Below is an example CONNECT where the host name is ‘bluesky’, the userid is ‘guest’, and
the password is ‘netex’:

page 20 UNIX Local User’s Guide 460377-02

User> connect bluesky guest netex
User: Connected to Service Imitiator on host 'BLUESKY'.

Welcome to Operating System - Version 5.9

Today is April 2, 1989 - The system will he down
for testing tonight between 19:608 and 22:00,
- Your System Administrator

User: Logged in as user 'quest’,
User: Connected to service 'USERB15° on host 'BLUESKY'.

Following a successful CONNECT, USER-Access returns several informative messages, the
exact syntax of which depends upon the host to which a connection is being made. The first
message above indicates that an initial network connection was established to the
USER-Access Responder (Service Initiator or service 'USER’). Following that message are
several lines of information surrounded by equal signs (= = =). The information between the
equal signs is returned by the remote operating system at login time. This information is not
necessarily important to USER-Access but may be to the user logging in. Next is a
USER-Access message indicating that a successful login occurred. Finally a message may
appear that informs the user of the name of the network service handling the connection.

Besides the additional parameters that can be passed directly to the remote login procedure,
the CONNECT command also has several qualifiers associated with it. The use of most of
these qualifiers is a function of the remote host. Refer to the User’s Guide for the remote host
for more information. “Command Descriptions” describing the CONNECT command will
also assist in the use of this command and its qualifiers.

Since most users would rather be prompted for input and would rather not see their passwords
echoed back to the terminal (if possible), it is suggested that the LOGIN alias be used when
establishing a remote host connection. This alias is documented in the next section.

Using LOGIN to Establish a Connection

The suggested way for establishing a remote connection is to use the LOGIN alias. LOGIN is
similar to CONNECT but has the advantage of being interactive. Below is a repeat of the
example from the previous section but using LOGIN instead of CONNECT:

User> login

Hostname? bluesky

Username? guest

Password?

Qualifiers?

User: Connected to Service Initiator on host 'BLUESKY'.

Welcome to Operating System - Yersion 5.6

Today is April 2, 1989 - The system will be down
for testing tonight between 19:60 and 22:80.
- Your System Administrator
User: lLogged in as user ‘guest'.
User: Connected to service 'USERG15' on host 'BLUESKY'.

Notice that LOGIN prompts the user for appropriate login information and that the password
was not printed to the terminal. (Whenever possible USER-Access supports NO-ECHO mode

460377-02 UNTIX Local User's Guide page 21

to improve security; not all systems provide this mode.) This interface is much more friendly
than using CONNECT and can be tailored to the needs of a given site by the system adminis-
trator. Following the prompts, the connect proceeds as expected.

Note: Since LOGIN is an alias that can be modified by the site administrator, it may operate
differently than the example. However, the overall process should remain similar.

Exchanging Host Information on Connect

To the user, the connect/login process appears fairly straightforward, but to USER-Access,
much must be done in order for two hosts to communicate. The issues concerning
CONNECT (LOGIN) qualifiers and login are addressed in the Remote User’s Guide section
of the manual for the host to which the connection is being made. Contained in this section is
a general discussion on the information passed by USER-Access that is available to the user.
This information may be useful in making decisions once a connection has been established.

Once a successful login has been assured, the USER-Access Responder (the remote server)
sends information about itself to the Initiator (the local client) and visa versa. The informa-
tion, which describes both the remote and local environments, is exchanged in order for the
two sides to establish how compatible they are and what functions can be supported. The
SHOW command is used to display this information. For instance, to display information
describing the local environment, type SHOW LOCAL as:

User> show local

User:

User: DIRectory Local_Directory Value
User: * HOSTCODE Character_Code
User: * HOSTTYPE 05_Type

User: INTeractive off

User: * PID ,.............. Process_ID

User: PREFiXu.... 05_Prefix

User: * PRODuct Product_Number
User: (QUlet of f

User: * STATuS Local_Status
User: * VERSION UA_Yersion_Kumber
User:

User: * Informational qualifier (cannot be modified).

The qualifiers that are preceded by an asterisk (HOSTCODE, PID, ete.) reflect environmential
data describing the local host and cannot be changed by the user. The remaining qualifiers
(DIRectory, PREFix, etc.) that appear are directly tied to the LOCAL command and may be
modified to affect that command’s execution. (Note that the display above is only a sample of
the information that might actually be seen for a particular host).

To display the remote environment’s information, use the SHOW REMOTE command:

page 22 UNIX Local User's Guide 460377-02

User> show remote

User:

User: * BLOCKsize Negotiated Blocksize
User: DIRectory Remote_Directory_Value

User: * HOST Host_MName

User: * HOSTCODE Native_Character_Code
User: * HOSTTYPE 05_Type

User: * PID Process ID

User: PREFix 05_Prefix

User: * PRODuct Product_Number
User: QIet veovvveenne- . off

User: * 5TATus Local_Status

User: * SERvice Offer_Name

User: * TRANSlate Current_Transiation
User: * USERname User's_Name

User: * VERSION UA_Version_Number
User:

User: * Informational qualifier (cannot be modified).

Again the qualifiers marked by an asterisk describe the remote environment (HOST, PID, etc.)
as well as information important to the connection itself (BLOCKsize, TRANSIate, etc.). The
remaining qualifiers (DIRectory, QUlet, etc.) are directly associated with the REMOTE
command and affect its execution.

Establishing Multiple Host Connections

A USER-Access session may have up to ten host connections at any given time. Although ten
may be unrealistic in most applications, it may be desirable from time to time to make a
second host connection at the same time another connection is in place. For example, assume
the user of the session below has already established a connection from the local host to a
remote host named BLUESKY. This first connection can be verified by invoking the SHOW
HOST command:

User> show host
User: active ----> (1) Host=BLUESKY User=guest

SHOW HOST gives a list of all existing connections for the present session. The current
“active” connection is flagged. The active connection is the one, if any, that reflects the
current remote host. To establish a second connection the LOGIN alias is used as explained
in “Using LOGIN to Establish a Connection” on page 21. For example, to connect to a host
named REDSKY, the following command sequence is used:

User> login
Hostname? redsky
Username? newuser
Password?
Qualifiers?

User: Connected to service 'USER' on host "REDSKY®.

t*xx%% Wolcome to Network Host REDSKY ***xx
84 - 62 -~ 89

User: Logged in as user ‘newuser'.

460377-02 UNIX Local User’s Guide page 23

The SHOW HOST command can be used again to display the list of connections held by this
session:

User> show host
User: (1) Host=BLUESKY User=guest
User: active ----> (2) Host=REDSKY User=newuser

Notice that REDSKY is now flagged as the active host. This means that any file transfer or
remote command execution will be directed to it instead of host BLUESKY. The SHOW
REMOTE command also will display the remote environment for host REDSKY since it is
now active. The connection to host BLUESKY remains but is in an idle state. To make it
the active connection, the SET HOST command is used as:

User> set host bluesky
or
User> set host 1

Now a look at the host display will show that BLUESKY is the active host:

lser> show host
User: active ----> (1) Host=BLUESKY User=quest
User: {(2) Host=REDSKY User=newuser

Having multiple host connections can be useful for managing system activities on a number of
hosts from a single point. For instance, a user on one host can send messages to a number of
other hosts. Or a user can start up jobs on several other hosts all from a single terminal on
the network. :

Disconnecting from a Host

To terminate an existing connection, the DISCONNECT command is used, Assume two con-
nections are currently established to hosts BLUESKY and REDSKY respectively, where
BLUESKY is the active connection. The following will terminate this connection:

User> disconnect
User: Disconnected from host BLUESKY.

To verify the connection has been broken, use the SHOW HOST command:

User> show host
User: (2) Host=REDSKY User=newuser

Following a disconnect, there is no active host. In order to make an existing idle connection
active, use the SET HOST command. The following command will make the connection to
REDSKY active:

User> set host redsky
SHOW HOST will now indicate the change:

User> show host
User: active ----> (2) Host=REDSKY User=newuser

An alternative way to disconnect from an active host is to exit the USER-Access session. The
EXIT command causes all connections to be disconnected prior to terminating the session.

page 24 UNIX Local User's Guide 460377-02

Transferring Files as a Local User

The file transfer capabilities of USER-Access are provided by two commands, SEND and
RECEIVE. The SEND command provides file transfer from a user’s local host to the current
remote host. The RECEIVE command transfers files from the remote host back to the local
host. Prior to transferring files, a network connection must exist.

Sending Files to a Remote Host

The basic format of the SEND command is:

Command Parameters
SEND src_spec [dest_spec] [qualifiers]
Where:

src_spec is the file specification of the local file to be transferred to the remote host.

dest_spec is the file specification of the remote file which is to be created or replaced by the
transfer. This parameter is optional. If it is omitted, USER-Access will use src_spec
to create the destination file specification based on the remote host.

qualifiers represents optional SEND qualifiers that may be added to the command line to
override the default values. The SEND qualifiers control such things as file cre-
ation, mode of transfer, and record orientation, and are defined by the remote host.

Once a connection to a remote host has been established, the user may begin transferring files.
This is generally as easy as typing SEND followed by a local file name:

User> send src_spec

where src_spec is the name of an existing file on the local host. USER-Access takes care of
mapping the local file name to a valid remote file specification in all but a few instances. If
USER-Access cannot successfully handle the mapping (for example if the source file name con-
tains unusual characters that the remote host just cannot tolerate), then the user must include
the destination file name on the command line. Specifying the destination name is also useful
for changing the name of a file from one host to another. The example below transfers the file
src_spec and renames it new_file on the remote host:

User> send src_spec new_file

The SEND command also supports wildcarding on both the source and destination file specifi-
cations. This information along with all of the host specific information concerning file trans-
fers, including examples, is explained in the file handling section of the appropriate manual.
Source file specifications, source wildcarding, etc., can be found in “File Handling Under
UNIX USER-Access” on page 41. Destination file specifications, destination wildcarding,
and qualifiers that affect the SEND command can be found in the same section of the manual
for the host to which files are being transferred.

460377-02 UNIX Local User’s Guide page 25

Receiving Files from a Remote Host
The basic format of the RECEIVE command is:

Command Parameters
RECeive src_spec [dest_spec] [qualifiers]
Where:

src_spec s the file specification of the remote file to be transferred to the local host.

dest_spec is the optional specification of the local file which is to be created or replaced by the
transfer. If it is omitted, USER-Access will use SIC_spec to create the destination
file specification on the local host.

qualifiers represents optional RECEIVE qualifiers that may be added to the command line to
override the default values. The RECEIVE qualifiers are defined by the local host.
As do the SEND qualifiers, the RECEIVE qualifiers control such things as file cre-
ation, mode of transfer, and record orientation.

Files can be received from a remote host as soon as a connection has been established.
Receiving a file is as easy as typing RECEIVE followed by a remote file name:

User> receive src_spec

where sre_spec is the name of a file that currently resides on the remote host. In the same way
as it handles SEND, USER-Access maps the remote file name to a valid local file name in ail
but a few instances which are generally due to character or length conflicts. If the file name
mapping cannot be automated, or if the user simply wishes to rename the file as it is received,
the local file name must be included as a second parameter on the command line, as shown:

User> receive remote file local_file

The example above transfers file remote _file from the remote host and renames it locel _file on
the local host.

The RECEIVE command supports wildcarding on both the source and destination file specifi-
cations. This information along with ail of the host specific information concerning file trans-
fers, is explained in the file handling section of the appropriate manual. Source file
specifications, source wildcarding, etc., can be found in file handling in the manual for the
remote host. Destination file specifications, destination wildcarding, and qualifiers that affect
the RECEIVE command can be found in “File Handling Under UNIX USER-Access” on
page 41 of this manual,

Send and Receive Qualifiers

USER-Access was designed to make file transfer very easy for all types of users. Much of the
simplicity comes through the use of default qualifier values. Although SEND and RECEIVE
have several qualifiers associated with them, defaults can be set up to operate most of the time
for most users. T herefore, the majority of users seldom need to modify the qualifier values,
On the other hand, changing the value of a SEND or RECEIVE qualifier is simple.

To show the available SEND or RECEIVE qualifiers after establishing a remote connection,
use the SHOW QUALIFIERS command. For example, to display the list of valid qualifiers
for SEND, type the folowing:

page 26 UNIX Local User's Guide 460377-02

User> show qualifier send

User:

User: CRC .vvvvvvunnnns file transfer checksum {on/off)

User: CREate file create options

User: MAXRECord maximum RECORD mode size

User: MODeccnvvuws file transfer mode

User: QUIet jnhibit file transfer display (on/off)
User:

The output above reflects a sample of the many qualifiers that might be seen. The actual
qualifiers for SEND depend on the remote host since that is where file creation takes place.
The RECEIVE qualifiers are directly associated with the local host for the same reason. If a
new connection is made to a different host, the qualifiers may change significantly.

To view the current values for the SEND or RECEIVE qualifiers, use the SHOW command.
For example, SHOW SEND displays the list of SEND qualifiers along with their current
values: '

User> show send

User:
User: CREC ..vevvennenness off
User: CREateevovness new

User: * DIRectory:L0Cal ... local_dir_value
User: * DIRectory:REMote .. remote_dir_value

User: HAXRECord 16000
User: HODevoveevenn. character
User: QUlet ...vvvevvenn. of

User:

User: * Informational qualifier {cannot be modified).

Notice that a DIRECTORY entry appears for both the local and remote host. This value
determines where the file will come from and where it will be sent if the respective file specifi-
cations are not given. (These qualifiers may be modified by using SET LOCAL DIREC-
TORY and SET REMOTE DIRECTORY.) The remaining qualifiers (the noninformational
qualifiers) may be modified using the SET command. For example, to change the RECEIVE
command’s default file option CREATE from NEW to REPLACE, use the following:

User> set receive creote replace

Or, to override the current value for a single file transfer, modify it on the SEND or
RECEIVE command line. For example:

User> receive sourcefile -create replace

For a complete list of valid RECEIVE qualifiers, refer to the “File Handling Under UNIX
USER-Access” on page 41 section of this manual. This section will also address detailed
information about transferring files to this host, wildcard support, transfer modes, and much
more. Refer also to the RECEIVE command in “Command Descriptions” on page 117 of
this manual.

The qualifiers for the SEND command on the other hand, are detailed in the file handling and
command description sections of the manual for the remote host to which file transfers will be
made. That manual will also address information concerning host file specifications, wildcard
support, file types supported, etc.

460377-02 UNIX Local User’s Guide page 27

Executing Remote Host Commands

USER-Access users can issue host commands on the remote host and view the results. Host
commands can take the form of a native host command or an alias that translates to a host-
specific command. Remote commands are issued from a USER-Access session via the
REMOTE command. A network commection to a remote host must exist prior to issuing
REMOTE. The command line format is:

Command Parameters
REMOTE [qualifiers] command
Where:

qualifiers represents optional REMOTE qualifiers that may be added to the command line to
override the default values. Their default values are defined by the remote host.

command may be cither a valid command on the remote host, an alias command defined using
SET REMOTE ALIAS, or one of the predefined host independent commands.

USER-Access performs translation on any alias prior to passing the command string to the
remote host, By default, the results of a REMOTE command get transferred back across the
network and displayed at the local user’s terminal,

For example, assume the remote host supports a command called DISPLAY TIME that
returns the current time of day. A user could execute this command from a USER-Access
session by typing the following:

User> remote display time

SYSTEM-A:

SYSTEM-A: The current time is: 12:12:81 pm
SYSTEM-A:

The results are displayed in the remote host’s format with the exception of the optional host
prefix that precedes each line of output (SYSTEM-A:). This prefix can be modified to the
user’s liking with the SET REMOTE PREFIX command.

Since users may be unfamiliar with the command syntax of a remote host, USER-Access
defines a set of commands (implemented as aliases) that exist on all hosts.! These commands,
referred to as host-independent commands, allow a user to execute commands on many dif-
ferent systems with a single, simple command set. To look at the list of host independent
commands defined for the. current remote host, issue the SHOW REMOTE ALIAS command:

User> show remote glias

User:

User: COPY Copy_a_file

User: DELete, Delete_a file

User: DIRectory ..,...... List_files

User: REName Repame_a_file

User: TYPe Type_contents of_a_file
User: WHO Who_is_on_the_system
User:

! Some of these commands may not be supported on alt hosts.

page 28 UNIX Local User's Guide ' 460377-02

User> show remote alias

User:

User: COPY .. vcvvvereenen Copy_a_file

User: DElete Delete_a file

User: DIRectorys List_files

User: REName Rename_a_file

User: TYPe .. ccovveninnsn Type_contents_of_a_file
User: WHOc0neen. Who_is_on_the_system
User:

The actnal output seen by the user will list all of the remote aliases (including host inde-
pendent commands) in the left column and the host command translations in the right column.
Users can issue host independent commands as if they were cormmands native to the remote
host. USER-Access handles the translation. For example, to obtain a list of files that reside
on the remote host, the host independent command DIRectory could be used:

User> remote dir

The actual native command for the remote host could be given. Assuming the native
command for listing files on the remote host is LISTFILES, an alternative to the above would
be:

User> remote listfiles

The commands would give identical results since the host independent command DIRectory
would be mapped to the native command LISTFILES for this host.

Refer to the remote user’s guide in the manual of the remote host for a list of host inde-
pendent commands defined for that system, as well as a discussion on executing commands on
that host. Also see the command description section of the same manual for the list of valid
REMOTE qualifiers and an example of their use.

Executing Local UNIX Commands

Users can issue host commands on the local host and view the results. Host commands can
take the form of a valid UNIX command or an alias that translates to a valid UNIX
command. Local commands are issued from a USER-Access session via the LOCAL
command. The format of the LOCAL command is:

Command Parameters
LOCAL fqualifiers] [command]
Where:

qualifiers represents optional LOCAL qualifiers that may be added to the command line to
override the defaunlt values. Qualifiers must appear before the command parameter.

command can be a valid UNIX command, an alias command defined using SET LOCAL
ALJIAS, or one of the predefined host independent commands (e.g. DIRECTORY,
TYPE, WHO, etc.). USER-Access performs translation on any alias prior to
passing the command string to UNIX,

By default, the results of a local command get displayed at the user’s terminal.

Note: AT&T System V UNIX utilities and University of California, Berkeley BSD (Berkeley
Software Distribution) 4.x utilities are slightly different. The examples in this manual

460377-02 UNIX Local User's Guide page 29

will show the output from the BSD utilities. The AT&T equivalent will be given in the
text following the example,

The following is an example of the LOCAL command being used within UNIX USER-Access
to obtain a list of what is happening on the system. The BSD? command is ps -xac:

User> local ps -xac

Unix: PID TT STAT TIME COMMAND
Unix: ™ 52 ¢ 1 0:842 sendmail
Unix: 587 1 6:12 sveinit
Unix: 597 1 9:03 bfxjs
Unix: 168 co IW 0:92 c¢sh
Unix: 3918 1p S 8:00 user
Unix: 3922 1p R 9:00 ps

Unix: 882 pg Iy 0:01 client

The prefix Unix: indicates that the results are being returned from the UNIX host.3 Using
LOCAL from within a USER-Access session, it is also possible to invoke a compiler, send user
messages, execute script files, etc. For example, to send the file MOV.FIL to the printer, the
BSD command* would be;

User> local lpr mov.fil

To execute a local command under UNIX, USER-Access forks a shell sub-process then issues
the command under it. Therefore, any command that is issued within the sub-process that
changes the user’s environment (e.g., local cd) will have no effect on the parent process or
USER-Access. However, shell scripts can be executed that modify the sub-process environ-
ment and then issue commands making use of those changes. The most likely item to want to
modify is the local directory default. USER-Access makes this possible with the SET LOCAL
command:

User> set local directory /nscitemp/sub

A display of the local directory will verify the change:

User> show local directory
User: DIRectory /nsc/temp/sub

The new directory value will be used as the default directory for all subsequent LOCAL com-
mands since USER-Access makes this change to the parent process, not a sub-process. There-
fore, the UNIX command pwd results in the following value:

User> local pwd
Unix: /nsc/temp/sub

Some UNIX commands require interaction from the user. If that is the case, the LOCAL
qualifier INTERACTIVE must be set when the command is issued. For example, to execute a
program called test that prompts for a file name, the INTERACTIVE flag would be set as:

* University of Califomnia - Berkeley BSD 4.x utility.

3 The AT&T UNIX equivalent is ps -ef.

s

The AT&T equivalent is Ip mov fil,

page 30 UNIX Local User's Guide 460377-02

The INTERACTIVE qualifier tells USER-Access to treat the terminal as standard input.
Normally standard input is redirected to the NULL device.

The LOCAL command also gives the user the ability to enter an interactive UNIX session,
keeping the USER-Access session in the background. This local interactive mode can be
invoked by leaving the command off of the LOCAL command line. The value of the INTER-
ACTIVE qualifier is also ignored.

User> local

$

At this point the user is simply running a UNIX subprocess. Any valid UNIX command can
be issued just as if USER-Access had never been invoked. To return back to the
USER-Access session, the user must logout of the UNIX subprocess by typing EXIT:

$ exit

User>

EXIT returns the user back to the USER-Access session, where all remote connections, alias
definitions, and the like have been retained. Local interactive mode makes it easy for a user to
bring up USER-Access, establish a remote connection, then return to UNIX for further
activity. When a file or remote job is requested, the user simply returns to USER-Access
where the remote host is actively waiting.

For more information on the LOCAL command and its qualifiers, refer to “Command
Descriptions™ on page 117 of this manual.

Issuing Local UNIX Host-Independent Commands

As on the remote host, the local USER-Access user has the option of executing native host
commands, host-independent commands, or user defined aliases. The host-independent com-
mands allow a user to execute commands on many different systems with a single command
set, To display the list of host-independent commands defined for UNIX USER-Access on
BSD, issue the SHOW LOCAL ALJAS command:

User> show local alias

User:

User: CANcel Jusr/uch/Tprm
User: COPYevvevnnns /binfcp
User: DELeteovvun. /hin/rm
User: DIFference /bin/diff
User: DIRectory /binf1s -al
User: HELP .. .vovvvnnnnns Jusr/uch/man
User: PRINtcvouues Jusrfuch/1pr
User: QUEUE ..ovvvvvnnnns Jusr/uch/1pg
User: RENamecevvuus Jbin/mv
User: STALUS ..ovvveuaens /bin/ps -xac
User: TYPE vuveennnnnnnns /binfcat
User: MHG ...covvnnnnnnne [bin/who
User:

For AT&T System V UNIX, the host-independent commands are:

460377-02 UNIX Local User's Guide page 31

User> show locel gligs

User:

User: CANcel Jusr/bin/cancel
User: COPY ,,............ /bin/cp

User: DELete /bin/rm

User: DIFference /bin/diff

User: DIRectory /bin/1s -al
User: HELP ,............. Jusr/bin/man
User: PRINt, fusr/binf1p
User: QUEue,. fusr/bin/Ipstat -t
User: REName /bhin/my

User:; STAtus [hin/ps -ef
User: TYPeco.u..n., /binfcat

User: WHO /bin/who

User:

The host independent commands are in the left column and the UNIX command translations
are in the right column. Users can issue host independent commands as if they were com-
mands native to UNIX.

The following is an example of a LOCAL command that invokes a host independent
command called TYPE. TYPE translates to the UNIX command car which types out the
contents of a file:

User> local type hello.file
Unix: * * % % *

Unix: HELLO
Unix: ** x » =

Notice that the output from TYPE is equivalent to the output from cat:

User> local cat hello.file
Unix: * * % & =
Unix: HELLGQ
Unix: * * * * =

Local UNIX USER-Access users can also create their own local aliases using the SET LOCAL
ALIAS command. For e¢xample, to create a local alias called CURRENTDIR that shows the
current default directory (i.e., pwd), issue the following command:

User> set local alias currentdir pwd

Now the SHOW LOCAL ALIAS command can be used to display the new alias:

User> show local olias currentdir
User: CURRENTDIR pwd

This new alias is equivalent to the UNIX command pwd and is stored along with the local
host independent commands. Users can create as many local aliases as desired. To make
them available for use in all USER-Access sessions, edit them into a local USER-Access
startup file.

Refer to “Command Descriptions” on page 117 of this manual for the list of valid LOCAL
qualifiers and an example of their use. Also see the “Advanced Local User's Guide” on
page 47 for further discussion on host aliases and ahases in general.

page 32 UNIX Local User's Guide 460377-02

Editing Remote Files with a UNIX Editor

Using a predefined alias called EDIT, users can invoke their favorite UNIX editor to edit files
that reside on the remote host in which they are connected. The EDIT alias is typically
defined in the USER-Access site startup file but can easily be redefined and customized in the
user’s startup file. The following is a sample EDIT alias that invokes a UNIX editor:

User> show alias edit

User: EDit ,....cvvvnuns. receive -mode char -cre repl {1} edit.tmp

User: ledit edit.tmp

User: ask -prom "Update remote (Yes/No)? " -def "Y" yn
User: set var § send -mode char -cre repl edit.tmp {1}
User: {cmp(yn,"Yes",5}}

User: local delete edit.tmp

To invoke EDIT, the user simply types EDIT followed by the name of an existing file on the
remote host:

User> edit rfile

In the example, the remote file rfile would automatically be transferred to the UNIX system
and the local editor would be invoked. The user would then edit the file in the normal way.
Once the edit session is over, the user has the option of overwriting the remote file or not.
Finally, the local temporary file is deleted. This EDIT alias can be greatly enhanced to
address file protection, loss of remote connection, etc. It is up to the site to determine exactly
how EDIT should function in each environment.

Refer to the “Advanced Local User’s Guide” on page 47 for more information on developing
multicommand aliases.

Interrupting a Command within UNIX USER-Access

To interrupt or terminate a command from executing once it has started, the standard inter-
rupt sequence should be invoked. For UNIX users, this is typically defined to be either the
DELete key or the <CTRL> <C> key sequence (hold the <CTRL> key (Control) and
press the C key). Since UNIX allows the interrupt sequence to be redefined, it is up to the
user to know its definition. Issuing an interrupt from the keyboard will cause any
USER-Access, local, or remote host command to terminate within a few seconds. Often it is
desirable to interrupt a command if the output becomes too lengthy (e.g. a directory listing),
or if the operation is no longer wanted (e.g. sending a group of files). Interrupting a
command with a single interrupt will result in the USER-Access prompt being displayed unless
an alias or input script is handling interrupts specially. (This is discussed in more detail in the
“Advanced Local User’s Guide” on page 47.)

To terminate a USER-Access session that appears to have hung for some reason, hit the inter-
rupt sequence three times in a row. Three consecutive interrupts causes USER-Access to
cleanup and exit.

Changing the Default UNIX SHELL

USER-Access allows the user to select which SHELL to invoke when executing local com-
mands on a UNIX system. For example, to set the SHELL qualifier on a local UNIX host to
[binfcsh, one would type:

460377-02 UNIX Local User’s Guide page 33

User> set local shell /binjcsh

The SHELL qualifier could be changed to the standard (Bourne) shell, cshell, or any third
party shell. For example, to tell USER-Access to invoke myshell when executing LOCAL
commands, type:

User> set local shell myshell

The shell, myshell, as defined, would always be taken from the user’s working directory. Be
sure that a sufficient path is given to the file or an error will resuit.

page 34 UNIX Local User's Guide 460377-02

UNIX Remote User’s Guide

This section is intended for users who are currently running the USER-Access Initiator from
any local host, regardless of operating system, and would like to establish a network con-
nection into a UNIX host. The information provided here and in “File Handling Under
UNIX USER-Access” on page 41 should be enough to help a non-UNIX user start being pro-
ductive in a very short period of time. UNIX users should also reference these sections to
become comfortable with how USER-Access operates in the UNIX environment.

Connecting into a UNIX Host

A USER-Access network connection is established into a UNIX environment by means of a
process known as the Service Initiator. The task of the Service Initiator is to process UNIX
login attempts from remote USER-Access users (Initiators) and, if successful, startup a server
process (Responder) that will then communicate with the remote user for the duration of the
USER-Access session.

The server process started by the Service Initiator is a logged in, interactive process running
under the given username/password as supplied by the remote user. All remote login requests
pass through the UNIX login utility to ensure that proper security is checked. Once the
Service Initiator has started the server process, it severs ties with both the remote user and the
server process, thus becoming available to service additional remote login requests.

CONNECT Qualifiers Used by UNIX USER-Access

The CONNECT command (which is used by the LOGIN alias) has several qualifiers associ-
ated with it, of which some are only used by certain systems to assist in the login process.
None of the CONNECT qualifiers are of special importance to UNIX.

The following CONNECT qualifiers are ignored by UNIX USER-Access at connect/login
time:

ACCount
APPlication
COMmand
PROFile
PROJect
SCRIpt
SECondary
SITE

The CONNECT command as described in “Command Descriptions” on page 117 lists all
applicable CONNECT qualifiers.

460377-02 UNIX Remote User's Guide page 35

Remote UNIX USER-Access Startup Files

After establishing a successful connection into a remote UNIX host, USER-Access executes
the startup files as described by the CONNECT SEARCH qualifier on the Initiator. The
normal default definition of this qualifier is:

User> show connect search
User: SEArch (SITE) {USER)

Possible values for CONNECT SEARCH are the keywords (NONE), (SITE), (USER), or any
valid remote file specification containing USER-Access commands. The definitions for the
special keywords as they relate to USER-Access for UNIX are given below.

(NONE) do not process any responder (or server) startup files.

(SITE) implies a USER-Access site startup file called sserver.ua located in the remote UNIX
site directory. This is explained in more detail in “UNIX USER-Access SEARCH
Keywords (SITE), (USER), and (NONE)” on page 93.

(USER) implies a USER-Access user-level startup file called server.ua that is located in the
user’s login directory. This is explained in more detail in “UNIX USER-Access
SEARCH Keywords (SITE), (USER), and {NONE)” on page 93.

No server startup files are required. If any do exist, USER-Access sends their contents (a
sequence of USER-Access commands) back to the local Initiator where they are then executed
in the order described by the SEARCH qualifier. The following USER-Access commands
cannot be used in server startup files:

CONNECT
DISCONNECT
LOCAL
RECEIVE
REMOTE
SEND

Transferring Files to a UNIX Host

The file transfer capabilities of USER-Access are provided by two commands, SEND and
RECEIVE. The SEND command provides file transfer from the local host to a remote UNIX
host. The RECEIVE command transfers files from a remote UNIX host back to the local
host.

The SEND and RECEIVE commands function the same regardless of the host from which
they are executed. However, the command qualifiers to SEND and RECEIVE differ
depending on the hosts involved. The qualifiers affect how files are stored, transferred,
named, etc. For details on the SEND and RECEIVE qualifiers that exist for file transfers to
and from a UNIX system, refer to “File Handling Under UNIX USER-Access” on page 41.

page 36 UNTIX Remote User's Guide 460377-02

Executing Remote UNIX Commands

The REMOTE command gives users the ability to execute host commands on a remote UNIX
system and view the results. Host commands can be either a native UNIX command or a
USER-Access remote alias (or host-independent command) having a UNIX command trans-
lation.

The following is an example of the REMOTE command being used within UNIX
USER-Access to check the status of the current remote UNIX system. The BSD command is
ps -xac’ .

User> remole ps -xac
Unix: PID TT STAT TIME COMMAND

Unix: 52 2 I 8:04 sendmail
Unix: 58 ? I 0:12 sveinit
Unix: 59 7 1 0:03 bfxis

Unix: 168 co IV 8:02 csh
Upix: 3918 1p § 0:60 user
Unix: 3922 1p R 8:00 ps
Unix: 882 p4 IM 0:61 client

The prefix Unix: indicates that the resuits are being returned from the UNIX host. This prefix
can be modified or turned off using the SET REMOTE PREFIX command.

Using REMOTE to execute commands on a UNIX host, it is possible to do tasks such as
execute a scrpt file, invoke a compiler, send user messages, delete a file, etc. ~Any
noninteractive, nonscreen oriented UNIX command can be issued. Interactive commands that
require users to respond to prompts or full screen oriented applications cannot be run through
USER-Access using the REMOTE command. It should be noted, however, that many interac-
tive tasks can still be performed remotely by providing an input file containing the requested
information.

To execute a remote command under UNIX, USER-Access forks a SHELL subprocess then
issues the command under it. Therefore, any command that is issued within the sub-process
that changes the user’s environment will have no effect on the parent process or USER-Access.
However, shell scripts can often be executed that modify the sub-process environment and then
issue commands making use of those changes.

The most likely item for a user to modify is the remote directory default. USER-Access makes
this possible with the SET REMOTE DIRECTORY command:

User> set remote directory froot/remdir/two

A display of the remote directory will verify the change:

User> show remote directory
User: DIRectoryoeveees [root/remdir/two

The new directory value will be used as the default directory for all subsequent REMOTE
commands since USER-Access makes this change to the parent process, not a sub-process.
Therefore, the UNIX command pwd results in the following value:

5 The AT&T command is ps -ef.

460377-02 UNTX Remote User’s Guide page 37

User> remote pwd
Unix: /root/remdir/two

For more information on the REMOTE command, refer to “Command Descriptions” on
page 117 of this manual.

Issuing Remote UNIX Host Independent Commands

Although executing UNIX commands from a remote system may be very useful, many times
remote users are not familiar with the UNIX command set. Therefore, USER-Access makes a
set of Host Independent Commands available for all users around the network to use, without
requiring them to learn each host’s command set. To display the list of host independent
commands defined for BSD UNIX USER-Access, issue the SHOW REMOTE ALIAS
command;

User> show remote aliags

User:

User: CANcel reees Susr/uch/Tprm
User: COPY /hinfep
User: DELete .,.......... /bin/rm
User; DIFference /bin/diff
User: BIRectory /bin/is -al
User: HELP fusrfuch/man
User: PRIGt Jusr/uch/1pr
User: QUEue {usr/uch/1pq
User: REName /bin/my
User: STAtus /hin/ps -xac
User: TYPe /binfeat
User: WHO /bin/who
User:

For the equivalent AT&T UNIX commands, the results would be as follows:

User> show remote gligs

User:

User: CANcel Jfusr/bin/cancel
User: COPY /bin/cp

User: BELete /bin/rm

User: DIFference /bin/diff

User: DIRectory /binfis -al
User: HELP fusr/bin/man
User: PRINt fusr/bin/1p
User: QUEue Jusr/bin/1pstat -t
User: REName /bin/my

User: STAtus /bin/ps -ef
User: TYPe /bin/cat

User: WHO /bin/who

User:

The host independent commands are in the left column and the UNIX command translations
are in the right column. Users can issue host independent commands as if they were com-
mands native to UNIX. USER-Access takes care of the translation.

page 33 UNIX Remote User's Guide 460377-02

Below is a list of all standard UNIX host independent commands along with a description of
how they are used. From any local USER-Access Initiator, any of these commands can be
invoked on a UNIX system by means of the REMOTE command.

CANcel cancels a specified job entry in the default UNIX print queue. Use the QUEUE
alias to display the queue and determine the job entry number. The format is:

CANCEL entry
COPY copy a UNIX file to another file name or UNIX directory. The format is:
COPY file_specl file_spec2
DELete delete a file or set of files on the UNIX host. The wildcard character “# may be

used in the file specification in order to delete multiple files. The format of
DELETE is:

DELETE file_spec
DIFference compare two UNIX files and list their differences. The format is:

DIFFERENCE file_specl file_spec?

DIRectory display a listing of all the files in the given UNIX directory., The wildcard char-
acter ‘¥ can be used to list only select files if desired, The format is:

DIRECTORY [directory name | file spec]
HELP obtain help on a UNIX topic. The format is:
HELP [unix_topic]
PRInt print a UNIX file or set of files to a UNIX printer. The format is:
PRINT file_spec
QUEue display the current entries in the default UNIX print queue. The format is:
QUEUE

REName change the name of the specified UNIX file to the new name specified as the second
parameter. The format is:

RENAME old_name new_name

STAtus display a listing of the current activity on the UNIX host. No parameters are
required. The format is:

STATUS
SUBmit there is no equivalent UNIX command for SUBMIT.

460377-02 UNIX Remote User's Guide page 39

TYPe type out the contents of a UNIX file. The format is:
TYPE file_spec

WHO display a listing of users that are currently logged on the UNIX host. No parame-
ters are required. The format is:

WHO

The following is an example of a REMOTE command that invokes a host independent
command called who. WHO translates directly to the UNIX command who which displays a
list of user’s currently logged onto the system:

User> remote who

Unix: admin console June 1l 95:32
Unix: guest ttya June 7 06:18
Unix: sam ttypl June 1 16:69

The output from WHO is equivalent to the output that would be seen from the UNIX
command who,)

Users can also create their own remote aliases using the SET REMOTE ALIAS command.
For example, to create a remote alias called LISTFILES that gives a UNIX directory listing
(i.e. /s -al), issue the following command:

User> set remote aligs listfiles ls -al

Now the SHOW REMOTE ALIAS command can be used to display the new alias:

User> show remote alias listfiles
User: LISTFILES 15 -al

This new alias is equivalent to the DIRECTORY host independent command and is stored in
the same fashion. Users can create as many remote aliases as desired. To make them avail-
able for use in all USER-Access sessions, edit them into a remote USER-Access startup file.

Refer to “Advanced Local User’s Guide” on page 47 for further discussion on host aliases and
aliases in general.

page 40 UNIX Remote User's Guide 460377-02

File Handling Under UNIX USER-Access

This section is intended to address UNIX file handling issues as they relate to USER-Access
file transfer commands SEND and RECEIVE. Both local and remote UNIX USER-Access
users should use this section as a reference for transferring files to and from a UNIX host.
Prior to reading this section, it is important to understand the following terminology:

Source Host Refers to the host in which the source file (of either a SEND or
RECEIVE), resides. The source file is the existing file which is being
transferred to the destination host.

Destination Host Refers to the host in which the destination file (of either a SEND or
RECEIVE), will be created. The destination file is the new file that
results following a file transfer.

The distinction between Source Host and Destination Host is important since both the SEND
and RECEIVE commands always transfer files from the Source Host to the Destination Host.
SEND and RECEIVE command qualifiers are for the most part tied directly to the Destina-
tion Host since that is where files get created. '

The following section describes the SEND and RECEIVE qualifiers that exist for file transfers
when a UNIX system is the Destination Host.

UNIX File Transfer Qualifiers and Default Values

Below is a list of the SEND and RECEIVE command qualifiers that are available for file
transfers when a UNIX system is the Destination Host. That is, when the local host is a
UNIX system, the qualifiers listed below pertain to the RECEIVE command (local UNIX is
the Destination Host). When the remote host is a UNIX system, the qualifiers listed below
are valid for the SEND command (remote UNIX is the Destination Host).

-CRC (BOOLEAN) indicates whether or not USER-Access should perform a checksum as
part of the file transfer. When CRC is enabled, a 32-bit CRC is calculated by the
sender along with a block sequence number. These are verified by the receiver. The
default for this value is OFF.

-CREate (STRING) indicates to the destination UNIX host how to create the new file. Each
host has its own CREATE options and defines a default that represents the
“normal” thing to do when creating new files. On UNIX, the “normal” thing to do
is replace an existing file if a file by the same name currently exists. Therefore, the
default CREATE option on UNIX is REPLACE. Other options are APPEND,
BACKUP, DELETE, and NEW. NEW returns an error if a file by the same name
already exists. BACKUP renames an existing file with a “.bak’ extension and creates
a new file. APPEND appends the source file to the destination file if it exists, or
creates a new file if it does not. DELETE is identical to REPLACE, except that it
deletes an existing file by the same name instead overwriting it, and then creates a
new one.

-FLOW (BOOLEAN) indicates whether or not USER-Access should enable file transfer flow
control. When FLOW is on, every NETEX block to be transferred must be
requested by the receiving host. The sender sends a block only when the receiver is
ready for one. FLOW exists to prevent unusual NETEX read timeouts during file
transfers, that can be caused, for example, by an interactive/selective restore from an

460377-02 File Handling Under UNIX USER-Access page 41

archive file. (Waiting for an operator to load a tape is another example of when
FLOW may be required). Because each block must be requested by the
USER-Access receiver, a significant penalty in performance is paid when FLOW is
enabled.

-MAXRECord (INTEGER) the maximum allowed record size when transferring files in
CHARACTER or RECORD mode. If an attempt is made to transfer a file in
CHARACTER or RECORD mode that has records larger than MAXRECORD,
the transfer will terminate with an appropriate error message.

-MODe (STRING) the current file transfer mode. USER-Access for UNIX supports the
following modes: CHARACTER, STREAM, RECORD, BACKUP, RESTORE,
VICHAR, and COPY. The value of MODE is used internally by USER-Access to
decide how to open and create files being transferred. A mode must be supported
by both hosts in order to have a successful transfer. For more information, refer to
“Transfer Modes Supported Under UNIX USER-Access” on page 46.

-PARTialrecord (BOOLEAN) with PARTialrecord enabled, records of length greater than the
NETEX block size can be transferred. The default is ON.

-QUlIet (BOOLEAN) tells USER-Access whether or not to display informational type mes-
sages on file transfer. This value should be set to either ON or OFF. The default is
OFF.

-SPAce (INTEGER) the number of bytes which USER-Access should allocate to the desti-
nation file prior to the file transfer. A ‘K’ or an ‘M’ may be appended to the
number to represent kilobytes or megabytes, respectively. If SPACE is specified as
either a 0 or a value with a leading asterisk (*), USER-Access uses the size of the
source file to determine how much space should be allocated to the destination file.
Specifying a positive SPACE value without a leading asterisk tells USER-Access to
use the larger of the SPACE values or the size of the source file. Generally SPACE
is used only for special applications or when the source host cannot determine the
size of the source file being transferred.

Definition of DIRECTORY Under UNIX USER-Access

When USER-Access is invoked from either the Initiator or Responder side, the session begins
with a default definition for the DIRECTORY qualifier for both LOCAL and REMOTE.
The definition of this qualifier under UNIX is the user’s current default directory. This
DIRECTORY value becomes the default for all file transfers when no source or destination
pathname is specified. It is also the default for all LOCAL and REMOTE commands issued
through USER-Access.

To change the default value of DIRECTORY, the USER-Access commands SET LOCAL
DIRECTORY and SET REMOTE DIRECTORY are used. For example, if the remote host
is a UNIX system and the current value of the remote DIRECTORY is [root fmyfoldfiles, a
new value of /sys/guest/nenfiles can be established as:

User> set remote directory /sys/quest/newfiles
To display the new value of the remote directory, the SHOW command is used:

User> show remote directory
User: DIRectory /sys/guest/newfiles

All subsequent file transfers and remote commands will then use this new value as a default
when no directory is given,

page 42 File Handling Under UNIX USER-Access 460377-02

UNIX File Specifications

Below is a very brief discussion of file specification syntax on UNIX operating systems. This
is provided as an aid to the occasional UNIX user who is interested in transferring files to or
from a UNIX system yet is unsure of file specification syntax.

A UNIX file specification is called a pathname. A pathname describes the path UNIX takes
to get from a starting point to a filename. A pathname begins with the root directory
(referred to as /") and includes every directory name between the starting point and the file
name. Slashes separate the names within a pathname specification,

A file specification under UNIX has the form:
/DIR/DIR/. .. /NAME.EXT
Where:

DIR is a directory name that can consist of multiple subdirectories each separated by a
slash (/).

NAME the file name portion consisting of alphanumerics, underscore (), or period (.).

EXT the file extension in USER-Access is the portion of the file specification following
the last period. USER-Access distinguishes extensions consisting of alphanumerics
and underscore. This portion generally gives indication of what type of data is in
the file.

An example UNIX pathname is;
fusr/smith/doc/manual.specs

The slash (/) at the beginning of the pathname refers to the root directory. The system begins
its search here. Next, it looks for a file system (think of it as a directory) called "usr’. Once
found, UNIX searches for a directory called ‘smith’ within the file system. It then searches for
subdirectory “doc’. From this it can locate the file ‘manual.specs’.

A typical USER-Access user would set his UNIX default directory, then SEND files from it to
a remote host or RECEIVE files into it. In this way, one only needs to specify the file name
and extension portion of the pathname in most cases,

Also note that UNIX file names are case sensitive. This means that ‘file” and ‘File’ are not
equivalent names.

UNIX File Specification Examples

Some example UNIX file specifications are listed below to help non-UNIX users get a better
understanding of their appearance.

fusr/barry/com/pag
Junix/smith/sources/saved/file.c
J/myprog.file.o

Jete/x

JETC/X
fgiant/y_man_doc/z/abcfile.text

When the path portion is missing, the current location is used as the default.

460377-02 File Handling Under UNIX USER-Access page 43

File Transfer Examples from a Local UNIX Host

Example 1

To send the file alpha.for from the current default local directory (/nsc/smith), to a remote
host, the following command would be issued: :

User> send alpha. for

User: SOURCE DESTINATION SIZE
USer: = e e
User: /nsc/smith/alpha.for alpha.for 54908

Notice the entire source filename is displayed. The resulting destination file specification
depends on the remote host in which the connection is made. If no destination name is speci-
fied, the source pame is used to construct the destination name, and the file is stored in the
current default remote directory. The size indicated in the display represents an approxi-
mation of the number of bytes from the source file transferred.

Example 2

To send the executable file test].exe from {mary/joefexe, to the remote host with the new name
of testl.sav, issue the following:

User> send /mary/joe/exe/testl.exe testl.sav -mode _stream

User: SOURCE BESTINATICN SIZE
User: mmmm e e e,
User: /mary/joe/exe/testl.exe testl.sav 228512

The MODE qualifier was set to STREAM because it was known that the file being transferred
was a non-record oriented binary file.

File Transfer Examples to 2 Remote UNIX Host

Example 1

To send a local file called myfile.nmp from a non-UNIX system to a Unix host, forcing a CRC
on the transfer, the following command is issued:

User> send myfile.tmp -cre

User: SOURCE DESTINATION SIZE

SO o e e e

User: myfile.tmp /iones/tmp/myfile.tmp 1922
Example 2

To receive a file called Jogin.rxt from a remote UNIX host, issue the command:

User> receive login. txt

User: SOURCE DESTINATION SIZE
US@r s~ e e s
User: /sys/jones/login.txt Tlogin.txt 2045

page 44 File Handling Under UNIX USER-Access 460377-02

Source Wildcard Support for UNIX File Transfers

Wildcarding is valid on the source file specification for both the SEND and RECEIVE com-
mands. Two USER-Access wildcard characters have been defined in an attempt to stand-
ardize the wildcarding for all hosts which can support it. These are:

* matches zero or more characters. For example, *def matches the strings abcdef,
cdef, def.
? matches exactly one character, For example, ?def matches the strings adef, bdef,

cdef, but does not match abcedef or def.

In addition to the USER-Access wildcard characters, one can also make use of the UNIX
wildcarding capabilities where the two do not conflict.

An example use of source wildcarding for UNIX USER-Access appears below. The example
demonstrates sending all the files in the default directory that start with the letter B and have
exactly three character extensions:

User> send b*, 277

User: SOURCE DESTINATION SIZE
USEPr: «reorecsumcca oo e e e e mm mm—mmm o= e
User: [ftmp/black.ftn black.ftn 82293
User: ftmp/blue.sam hlue.sam 167461
User: /tmp/brown.doc brown.doc 4365

Destination Wildcard Support for UNIX File Transfers

Destination wildcarding is also available on UNIX USER-Access. Destination wildcarding
makes it possible to transfer a set of files from one system to a UNIX host, modifying the file
names as part of the process. The single character “* is used to make this happen.

When a ‘* is seen as part of the destination file specification, USER-Access replaces it with
either the “file name” portion of the source file specification or the “file extension” portion of
the source file specification, depending on its position in the destination file specification. For
example, to send all of the files with an extension of FTN from some local host to a UNIX
host, renaming the files with an extension of FOR, destination wildcarding would be used as:

User> send *.ftn *.for

User: SOURCE DESTINATION SIZE
USer: =-m-mmemcmmmecccc et mmme e m e e e e mm e na e
User: ahcdef.ftn [temp/ahedef. for 33114
User: sample.ftn [temp/sampie.for 67261
User: test.ftn /temp/test.for 4277

In this example, USER-Access replaced the * in the destination file specification with file
names (ABCDEF, SAMPLE, TEST) from the source file specifications. The file extension
was also renamed from FTN to FOR. It is also possible to append characters around the "*’.
For instance the destination file specification could have appeared as:

User> send *.ftn x*x.*sav

User: SOURCE DESTINATION SIZE
Y I T
User: abedef.ftn ftemp/xabcdefx.ftnsav 33114
User: sample.ftn /temp/xsamplex,ftnsav 67261
User: test.ftn ftemp/xtestx.finsav 4277

460377-02 File Handling Under UNIX USER-Access page 45

In this example, destination wildcarding was used to modify both the file name and file exten-
sion portion of the destination file.

Transfer Modes Supported Under UNIX USER-Access

UNIX USER-Access supports seven modes of file transfer: BACKUP, CHARACTER,
COPY, RECORD, RESTORE, STREAM, and VICHAR. A user selects the file transfer
mode by setting the SEND or RECEIVE qualifier MODE. The mode must be supported by
both hosts for a successful file transfer. The MODE qualifier defines the form in which data
will be transferred between two actively connected hosts. Keep in mind that the internal rep-
resentation of data within a file varies from host to host even though most hosts define the
same modes of transfer. Each mode is described in further detail below as it relates to UNIX.

Note: A more detailed description of each transfer mode is given in “Advanced UNIX
Transfer Modes” on page 99.

BACKUP mode is designed to allow UNIX files to be backed up on some other host and then
restored, with full characteristics, at some later time. A special header is built around the
resulting file in order to properly restore the file and its original characteristics. BACKUP
mode is especially instrumental to USER-Access for supporting Central Archiving, Central
Archiving allows UNIX files, directories, or disks to be backed up across the network, in a
single container file, onto another host’s disk or tape drive. UNIX Central Archiving uses the
standard UNIX archive utilities (tar, cpio, etc...) to read or write the data. The resulting file
will generally not be intelligible on the destination host, but can be restored to a UNIX system
as it originally existed. BACKUP under USER-Access for UNIX is more advanced than in
other systems; it saves full file characteristics as part of the backup header.

CHARACTER mode file transfers are generally designed for moving text files from one host
to another. This mode performs automatic code conversion across the network and assumes
the data being transferred contains only text data. An error will generally result if an attempt
to transfer binary data is made.

COPY mode is designed for peer to peer file transfers. In COPY mode, UNIX files can be
moved from one UNIX system to another very efficiently. USER-Access keeps track of all file
characteristics and restores them on file creation. Any type of file (text or binary) can be
transferred very fast in COPY mode since file access is done as efficiently as possible, without
individual records having to be manipulated. The data in COPY mode is transferred as an
unstructured stream of bytes.

RECORD mode transfers are designed for moving record oriented binary data. As in
STREAM mode, no code conversion is performed on the data. In RECORD mode, the qual-
ifier MAXRECORD determines the maximum allowable record that can be read from or
written to a file.

RESTORE mode is used to restore a file previously transferred in BACKUP mode.
RESTORE mode expects to find a backup header built around the file it is attempting to
restore. Central Archiving also uses RESTORE mode to list or restore a previously saved
container file. Refer to the discussion on BACKUP mode above.

STREAM mode file transfers are generally designed for moving files that contain block ori-
ented binary data. STREAM mode files are transferred as an unstructured stream of bytes,
without record orientation, although the data may contain record headers. No code conver-

sion is performed on the data for STREAM mode transfers.

VICHAR mode is provided for compatibility with Release 1 versions of USER-Access. It is
equivalent to CHARACTER mode under Release 1.

page 46 File Handling Under UNIX USER-Access 460377-02

Advanced Local User’s Guide

Introduction

This section is intended for users who already have a good working knowledge of
USER-Access and would like to learn more details about the product. Site administrators
responsible for USER-Access as well as those users developing USER-Access scripts and
aliases will benefit most from this section.

The majority of this section discusses how to develop a custom USER-Access interface
through the use of string functions, input scripts, and aliases. The remainder of the section
discusses advanced topics such as user-definable help files and USER-Access batch jobs.

Special Characters

Several characters have special meaning to USER-Access when it is parsing a command line.
The position of the character within a line is a determining factor on how USER-Access will
interpret it. The characters are:

* The asterisk is treated as a comment character if it appears as the first character on
the command line. That is, USER-Access ignores the line. (An alternate cornment
character is the ‘#). Comments are generally used within USER-Access alias defi-
nitions and input files to make them more readable for the user. The following are
example USER-Access comment lines:

User> * This is g comment and is ignored.

This is identical to the ‘** character as described above.
User> # The pound sign is trested as g comment too.
- The dash character has two meanings within USER-Access. First, if it appears as

the last character of a command line, it tells USER-Access to continue the command
on the next line. USER-Access then prompts for more input. For example:

User> set aligs exomple -
More>> text Example of continuing g commond on next line.

The second use of the dash character is to specify a qualifier to a USER-Access
command. A gualifier must follow the dash without any spaces between the two.
For example, to turn on quiet mode on the SEND command, the user would specify
the QUIET qualifier as below:

User> send -quiet source destination

To tell USER-Access to take the dash literally on a command line, escape it by
typing two dashes in a row (i.e., "--").

460377-02 Advanced Local User's Guide page 47

-

"

The exclamation point is used by USER-Access as the escape character for special
command line processing. Depending upon its position within a command line, it is
interpreted several different ways. First, the exclamation point is used to create
multicommand aliases when it appears as the last character on the command line
(with no trailing spaces). For example, to create a two command alias called
NAME, the exclamation point is used as follows:

User> set gligs NAME {} ask -prompt "Enter Name: * name |
More>> text Hello {name}.

Second, the exclamation point is used to escape the {" and ‘}’ characters. An excla-
mation point appearing immediately before either of these characters tells
USER-Access to take them literally and skip any string processing that would
normally be done. For example:

User> fext Leave the braces ! {heret}.

Finally, the exclamation point is used to tell USER-Access not to do any alias proc-
essing on a given command. Since an alias may have the same name as a
USER-Access command, an exclamation point immediately preceding a command
tells USER-Access to use the command, not the alias. The same holds true for local
and remote command aliases. If an exclamation point appears immediately before a
command preceded by LOCAL or REMOTE, USER-Access uses the command as it
appears without processing it as an alias. Each of the following lines in the example
below tell USER-Access to use the command even if an alias by the same name has
been defined:

User> Itext ignore alias processing on text
User> local idir
User> remote {who

This character marks the beginning of string substitution. It is used along with the
‘} character to delimit a positional parameter, a string variable, or a string function.
For example, to print out the value of string variable NAME, the following
command could be issued:

User> text Your nome is {nome).

To tell USER-Access to take either the “{’ or ’} literally, use the exclamation point:
User> text Print the line with braces H{nomel}.

To tell USER-Access to turn off string substitution, the sequence ‘{}’ is used:
User> text {} Turn off string substitution {name}.

This character marks the end of string substitution. See the explanation of "
above.

The double quote character allows the user to create a string that contains
embedded blanks:

User> set input prompt “NEW PROMPT> *)
To escape the double quote character, type two in a row (ie.,”).

USER-Access String Substitution

USER-Access string substitution gives users the ability to write complex aliases and input

seripts.

String substitution can take place anywhere within a USER-Access command line.

The syntax is:

page 48

Advanced Local User’s Guide 460377-02

{string}

where string is either a siring literal, string variable (including positional parameters), or a
string function. String substitution involves the replacement of {string} by its computed value.
The result, or replaced value, of string substitution is always a string.

A string literal refers to any quoted string. The following are examples of a string literal:

LI}

HBOXII
" Big Box "
"This is a Big Box"

Performing string substitution on these string literals within a USER-Access TEXT command
produces the following results:

User> text {* *}.
User: .

User> text {“Box"}.
User; Box.

User> text {* Big Box *}.
User: Big Box .

User> text {“This is o Big Box"}.
User: This is a Big Box.

A string variable, also referred to simply as a variable, is an arbitrary name that is associated
with a predefined character string value. Assume the following string variables exist and are
defined as indicated:

Variable Definition
hostname BLUESKY

a Sample string
day 28

String substitution involves the replacement of a string variable by its currently assigned value.
Therefore, performing string substitution on these vanables within the TEXT command,
produces the following results:

User> text {hostname}.
User: BLUESKY.

User> text {a}.
User: Sample string.

User> text {day}.
User> 28,

String function refers to one of the USER-Access defined functions that may accept parame-
ters, and return a string as a result. A few simple string functions with sample arguments
appear below:

date()
upper("this is a test")
Cmp(”good", "bad", "Compared", 'Didn't Compare")

Performing string substitution on these example string functions resuit in the following:

460377-02 Advanced Local User’s Guide page 49

User> text {date(}}.
User: Sun Apr 2, 1989,

User> text {upper(“this is a test*}}.
User: THIS IS A TEST.

User> text {cmp(*good”, “bad®, *Compared”, “Didn‘t compare®)}.
User: Didn't compare.

Although the TEXT command was used in all of the examples above, string substitution can
be performed anywhere within a USER-Access command line, whether it is part of another
USER-Access command, or on a line by itself. It’s important to remember that the result of
any string substitution is simply another string. Therefore, the resulting string could even be a
USER-Access command,

String Variables

USER-Access variable names can be from one to twenty alphanumeric characters long,
including underscores or similar special characters. There are two types of variables, local and
global. A local variable exists only within the input level, or input file in which it was initially
defined. If an input file is nested, it cannot reference local variables defined by its caller. A
local variable defined within an input file is no longer valid after that input file is exited.

A global variable can be defined from any input level, or input file, and referenced by any
other one. That is, once a global variable is defined within a USER-Access session, that vari-
able is known throughout the session, regardless of the current input level. Generally it is
better to use local variables whenever possible since these do not get left around from input
file to input file. Global variables, on the other hand, take up USER-Access internal storage
and can eventually lead to a “Environment overflow” condition. This condition may be
relieved by undefining some previously defined global variables as described later in this
section. This will recover internal storage space, even though the undefined variable will still
be displayed with a nul value.

Variables can be defined in a couple of ways. The most obvious is with the SET VARIABLE
and SET GLOBAL commands. SET VARIABLE is used to define a local variabie, SET
GLOBAL defines a global variable. An example of each of these appears below:

User> set variable usernome smith
and,
User> set global days Seturday and Sunday

In the first case, local variable usernome was given the value ‘smith’. In the second case global
variable days was assigned the value ‘Saturday and Sunday’. Keep in mind, all variables are
defined as character strings. To show the current value of the variables defined above use the
SHOW VARIABLE and SHOW GLOBAL commands respectively:

User> show voriable username
User: USERNAME smith

and,

User> show globul days
User: DAYS Saturday and Sunday

To undefine a local or global varable, use the SET command with the variable name and no
value. For example, to undefine the two variables described above, use the following com-
mands;

page 50 Advanced Local User's Guide 460377-02

User> set variable usernome
and,
User> set global days

An undefined variable will appear in a SHOW VARIABLE or SHOW GLOBAL display as a
variable without a definition. If an undefined variable is referenced within a USER-Access
~ command, a null string is substituted in its place.

The second way to define a local variable is with the ASK command. The example below
defines the variable usernome again, but using ASK:

User> ask -prompt “Enter Usernome: * username
Enter Username: smith

The real significance of string variables is the ability to use them within USER-Access aliases
and input scripts. To reference the value of a variable, enclose the variable name in braces {}
within a USER-Access command line (this invokes string substitution). Refer back to the var-
iables usernome and days above. Their values can be used in the TEXT command as:

User> text The vaolue of variable usernome is {username}.
liser: The value of variable username is smith.

and,

User> text {days} are coming soon.
User: Saturday and Sunday are coming soon.

_ The braces around the variable name tell USER-Access to replace it with its assigned value.

Since local and global variables are stored differently within USER-Access, it is fpossibie to
create a global variable with the same name as a local variable. For example:

User> set vorioble hostname glpha
User> set global hostnome omega

The variable hostnome has been defined twice, once as a local variable with a value of ’alpha’
and again as a global variable with a value of ‘omega’. Because USER-Access gives preced-
ence to local variables, referencing {hostname} will result in the local value of ‘alpha’. A
special syntax is used to reference the value of a global variable when a local variable of the
same name exists. An example follows:

User> text The locol value is {hostname}.

User: The local value is alpha.

User> text The global velue is {hostnome:global}.
User: The globhal value is omega.

By default, when a variable is enclosed in braces (without the :global’ syntax), USER-Access
looks for a local variable by that name. If one is found, its value is returned. If one is not
found, USER-Access looks next for a global variable by the same name and uses its value if
found. Appending the variable name with “:global’ within the braces tells USER-Access not to
look for a local variable but instead look immediately for a global variable of that name.

USER-Access carries this special syntax one step further in allowing the substitution of
USER-Access command qualifier values. These values can be used as variables as shown
below. The syntax is: '

{qualifier:cmd}

460377-02 Advanced Local User’s Guide page 51

where qualifier is a valid qualifier (including informational qualifiers) for the specified
command cmd. For example, if the current value of the SEND qualifier "CREATE’ was
defined to be ‘new’, this could be referenced as:

User> text SEND qualifier CREATE is {create:send}.
User: SEND qualifier CREATE is new.

The following example shows how the command qualifiers can be used to set the
USER-Access input prompt. Since the prompt is controlled by the INPUT command qualifier
PROMPT, this can be modified to the users liking., To change the prompt from the default of
"User> ’ to the current name of the remote host (assume it’s called STARMAN), the fol-
lowing command is used:

User> set input prompt {} {host:remote}>
STARMAN=

The syntax {host:remote} says to extract the value of informational qualifier HOST from the
REMOTE command defaults, and replace this value on the command line. (The empty {} is
explained in the section entitled “Disabling String Substitution” on page 75.) The following
command produces an equivalent result: -

User> set input prompt STARMAN>
STARMAN>

Although the result is equivalent, the second example above does not allow f'o_r flexibiiity
within an alias or input script, nor is it flexible enough to change for each connection made to
a different remote host. ’

page 352 Advanced Local User's Guide 460377-02

VString Literals

A string literal as mentioned earlier, is any quoted string, Quoted strings refer to a string of
characters, enclosed in double quotes, from zero to n long, where » is arbitrarily long
depending on the space remaining in the USER-Access input buffer.

Below is an example of a string literal used with string substitution and the string function
LOWERY) (described on page 69) to define the USER-Access prompt as command? with two
leading and two trailing spaces.

User> set input prompt {lower{" COMMAND? *)}
This will result in the following prompt, including the two leading and two trailing spaces:
command?

In order to have embedded double quotes within a string literal, the user must escape each one
with a second double quote. The example below shows this:

User> set input prompt {lower("*®Enter g Command:®* "}}
The resulting prompt would be:

"enter a command:"
with a single trailing space.

The examples above demonstrate the use of string literals within the SET command. Quoted
strings within a TEXT command, however, are taken literally. Therefore, to display the same
“enter a command:” with double quotes using the TEXT command, the following syntax is
used:

User> fext "enter @ command:”
User: "enter a command:"

String Functions

USER-Access string functions perform certain predefined tasks and return a string as output.
String functions perform such tasks as comparing two strings, forcing a string to upper/lower
case, returning the status of the previous command, and sleeping for a predetermined amount
of time. Some string functions require arguments and some do not. All arguments passed to
a string function must be either a numeric constant, string literal, a string variable, or another
string function. For example, the string function Jower() takes a single argument which is a
string that will be forced to all lower case characters. The following are all valid arguments:

a string literal

a variable named hostname

a string function date()

string functions with numeric constants

Tower{"sample string")
lower (hostname)
Tower(date())

Tower (ext(time(),1,5))

USER-Access performs string substitution from the inside out. Therefore, if a string function
exists as an argument to another string function, the innermost string function is executed
first, and the resultant string is passed as an argument to the outer string function. In the
example lower(date()) above, the date() function would get processed first then the actual date
string would be passed as an argument to lower().

The greatest use of string functions comes within USER-Access scripts (input files or aliases).
Often it is desirable to perform a particular USER-Access command based on a certain condi-

460377-02 Advanced Local User’s Guide page 53

tion. String functions make this possible. The following is an example of a simple script that
tests the results of a2 command with the status() function and operates accordingly:

set input continue on
*

* Loop until successful connection.

*

again:

ask -prompt "Hostname? " host

connect -quiet {host}

{egs(status(), "S", "text Connect worked.", "goto again")}

This script also makes use of the eqs() function. Eqs() compares the result of status() with the
string “S” (Success). If the strings compare (i.¢., if the CONNECT was successful), the third
argument of eqs(} is used to replace the function in the substitution. If the strings do not
compare, the fourth argument is used.

Notice that these last two arguments are simply USER-Access commands enclosed in double
quotes. The third argument “text Connect worked.” prints a message at the user’s terminal
and continues processing. The fourth argument “goto again”, causes processing to loop back
to the ‘again:” label where the user is prompted for a new hostname. The GOTO command is
discussed in a later section.

The remainder of this section describes the USER-Access string functions in more detail. The
functions are listed in alphabetical order except where functions are grouped by a logical asso-
ciation (for example, arithmetic operations). Each function is indexed individually.

The descriptions assume the user is familiar with USER-Access strings and string variables as
described in the section entitled “String Variables” on page 50. Table 2 on page 55 is a list
of the available string functions. Most of these functions follow the table in alphabetical
order, however the arithmetic and logical functions are grouped together.

page 54 Advanced Local User’s Guide 460377-02

Table 2 (Page 1 of 2). List of Functions

Function Description Page

ADD adds two numeric string expressions and returns the resuit. 57

CHR returns a single character represented by the specified number | 53
in the local host machine’s native character set (ASCII or
EBCDIC).

CMP compares two strings. Allows for partial string match by 59
specifying the required characters in upper case.

DATE returns the system date of the local host. 60

DEC subtracts one from a numeric string expression and returns 61
the resuit.

DFN tests if a variable is defined. 62

DIV divides the first numeric string expression specified by the 57
second and returns the result.

ENV returns the value of the local host environment variable if the | 63
local host supports such variables. If local host environment
variables are not supported or if the specified variable is not
defined, a null string is returned.

EQ tests if the first number specified is equal to the second 68
number specified.

EQS tests if the first string specified is equal to the second string 64
specified.

EXT extracts and returns a bounded sequence of characters froma | 65
string.

GE tests if the first number specified is greater than or equal to 68
the second.

GT tests if the first number specified is greater than the second. 68

INC adds one to a numeric string expression and returns the 61
result.

INDEX returns the position of the second string specified within the 66
first string. The function returns zero if the second string is
not found.

LE tests if the first number specified is less than or equal to the 68
second.

LEN returns the count of characters that make up the specified 67
string.

LOWER returns the lower case equivalent of a string expression, all 69
characters but upper case are left untouched.

LT tests if the first number specified is less than the second. 68

MOD returns the remainder of the division of the first numeric 57
string expression specified by the second.

MUL multiplies two numeric string expressions and returns the 57
result.

460377-02 Advanced Local User's Guide page 55

Table 2 (Page 2 of 2). List of Functions

Function Description Page

MSG returns the information of the last message. MSG is most 70
often used to tailor the USER-Access output message format.

NDF tests if a variable is not defined. 62

NE tests if the first number specified is not equal to the second. 68

NES tests if the first string specified is not equal to the second. 64

PARAMS | substitutes the positional parameters specified. It is impor- 71
tant to note that quoted parameters remain quoted and are
considered one whole parameter - regardless of imbedded
spaces.

SLEEP causes USER-Access to pause or “sleep” for a specified 72
number of seconds. This process is not interruptible, This
function results in a null string.

STATUS returns the single status character of the previous command: 73
S = Success, E = Error. :

SUB subtracts the second numeric string expression specified from 57
the first and returns the result.

TIME returns the system time of the local host. 74

UPPER returns the upper case equivalent of a string expression, all 69
characters but lower case are left untouched.

page 56 Advanced Local User’s Guide 460377-02

Arithmetic Operations

The following is a list of arithmetic operators.

ADD
DIV

MOD

MUL
SUB

Format

add two numeric string expressions and return the result.

divide the first numeric string expression specified by the second and return the
result.

return the remainder of the division of the first numeric string expression specified
by the second.

multiply two numeric string expressions and return the resuit.

subtract the second numeric string expression specified from the first and return the
result.

add(numberl, number2)
div(numberl, number2)
mod (numberl, number2)
mul (numberl, number2)
sub(numberl, number2)

‘Where:

numberl, number2 numbers to be operated on.

Examples: Add two constants and return the resuit:

User> text {odd(5,10)}

User:

15

Ask the user to enter three numbers:

User> ask -prompt "Enter 3 £'s: " numl numé? num3
User: Enter 3 $#'s: 2 3 4

Find the square of the first number:

User> text The Square of {numl} is: {mul(numl,numl)}
User: The Square of 2 is: 4

Find the total sum of the three numbers:

User> text {numi}+{num?}+{num3} = {odd{numl,add(num?,num3})}
User: 2+3+4 = 9

Divide the third number by the first number:

User> text {num3}/{numl} = {div(num3,numl)}
User: 4/2 = 2

460377-02

Advanced Local User’s Guide page 57

CHR Function

The CHR function returns a single character represented by the specified number in the local
host’s native character set (ASCII or EBCDIC).

Format

chr(number)

Where:
number a number corresponding to the host’s native character set.
Examples: To display the quote character on a system using ASCII:

User> text This is g quote {chr(34)}
User: This is a quote "

To display the quote character on an EBCDIC host:

User> text This is o guote {chriox7F)}
User: This is a quote ®

page 38 Advanced Local User's Guide 460377-02

CMP Function

The CMP function compares two strings. Allows for partial string match by specifying the
required characters in upper case.

Format

cmp(string, key, if _true [, if_false])

Where:

string a string expression whose letters are compared with the key argument.

key a string expression defining the letters required for partial string match. Upper case
letters define the minimum required spelling, Key is used to validate the argument
string.

if_true a string expression whose value the function takes if the test is successful.

if_false an optional string expression whose value the function takes if the test fails. If this
argument is omitted, the function takes on the value of a null string.

Examples: Ask the user for a Yes/No response, and compare the reply with the key "Yes”.
Require the user to type at least "Y":

User> gsk -prompt “Yes/No? * reply

User: Yes/Ho? y

User> text {cmp(reply,”Yes","YES®,"NO")}
User: YES

Ask the user for a Yes/No response, and compare the reply with the key “YES”. Force the
user to type the entire word "YES™:

User> agsk -prompt “YES/No? " reply
User: YES/No? yes

User> text {cmp(reply,” YES* ,*YES,"NO")}
User: YES

In order to not compare to the key, do the same commands, but reply to the prompt with text
that doesn’t meet the minimum spelling requirements:

User> gsk -prompt "YES/No? ° reply

User: YES/No? y

User> text {cmp(reply,"YES",”YES","NO")}
User: NO

460377-02 Advanced Local User's Guide page 59

DATE Function

The DATE function returns the system date of the local host.

Format

date([number])

Where:
number this is 2 number that specifies the format of the date:

0 = WWW MMM DD, YYYY
1 = YYMMDD

where W = Weekday; M = Month; D = Day; Y = Year. The default is 0. Speci-
fying a value other than 0 or 1 will return a nuil value,

Examples: Display the system date:

User> text Todoy is {date(0)}
User: Today is Thu Mar 16, 1989

Display the system date in YearMonthDay format:

User> text Today is {date(1)}
User: Today is 890316

page 60 Advanced Local User's Guide 460377-02

DEC and INC Functions

DEC subtract one from a numeric string expression and return the result.
INC add ore to a numeric string expression and return the result,

Format

dec{number}
inc(number})

Where:
npumber number to be operated on.
Examples: Display the results of incrementing “5”:

User> text Increment 5 = {inc{5)}
User: Increment 5 = 6

Assume the variable CNT exists and has a value of 12. The value of CNT minus one can be
displayed as follows:

User> text New cnt = {dec{ent)}
User: New cnt = 11

This procedure did not change the actual value of .CNT; it only displayed the decremented
value. To decrement the value of the variable CNT, use the SET VARIABLE command as

shown:

User> text cnt = {cnt}

User: cnt = 12

User> set varigble cnt {dec(cnt)}
User> text cat = {cnt}

User: cnt = 11

460377-02 Advanced Local User's Guide page 6!

DFN and NDF Functions

The DFN function tests if a variable is defined. The NDF function tests if a variable is not
defined.

Format

dfn(variable , if_true [, if_false 1)
ndf{variable , if _true { , if_false })

Where:

variable a string variable that is to be tested. A string is considered to be undefined if it has
no value (ie. null string).

if_true a string expression whose value the function takes if the test ts successful.

if_false an optional string expression whose value the function takes if the test fails. If this
argument is omitted, the function takes on the value of a null string.

Examples: To find out if a variable is defined, such as the variable COUNT:
User> text {dfn(count,”YES","N0*)}
If COUNT was defined, USER-Access would respond with YES.

Set the input prompt to be the remote host variable if it is defined; otherwise use the string
literal “User”:

User> set input prompt {} {dfh(host:remote,host:remate,"User")}>
If the remote host name is BLUESKY, the prompt would be:
BLUESKY>

NDF can also be used to set the input prompt to be the remote host variable or to the string
literal “User”;

User> set input prompt {} {ndf(host:remote,'User”,host:remote)}>
User>

If the remote host name is BLUESKYY, the prompt would be:
BLUESKY>

Define an alias "PRINT” to output the first parameter passed to it, or to output “no param-
eter” if no parameter is passed.

User> set elias print {} {ndf{l,"text no parameter® ,*text {1}7)}
Execute the alias with no parameters:

User> print
User: no parameter

Now execute the alias with the parameter “this text”:

User> print this text
User: this

page 62 Advanced Local User's Guide 460377-02

ENYVY Function

The ENV function returns the value of the local host environment variable if the local host
supports such variables. If local host environment variables are not supported or if the speci-
fied variable is not defined, a null string is returned.

Format

env(variable)

Where:

variable a local host environment variable. This variable may be upper/lower case sensitive.
The definition of such a variable depends on the local host.

Examples: Assume a variable “bite” is defined to be “apple” in the local host's environment.
Display the value of the host environment variable with ENV:

User> text {env("bite")}
User: apple

To return the host environment variable "THOME™:

User> text {env("HOME"}}
User: SYS$SYSDEVICE: [ROOT]

460377-02 Advanpced Local User's Guide page 63

EQS and NES Functions

The EQS function tests if the first string specified is equal to the second. The NES function
tests if the first string specified is not equal to the second.

Format

egs(stringl, string2, If_true [, if false 1)
nes(stringl, string2, if true [, if false D

Where:
stringl, string2 these can be varable or literal string expressions.
if_true a string expression whose value the function takes if the test is successful.

if_false an optional string expression whose value the function takes if the test fails. If this
argument is omitted, the function takes on the value of a null string,

Examples: Assume when connecting to most systems with a Username "GUEST”, a password
is usually not required. Set the Username variable “usr” to the text “person”, Then, if the
Username is NOT "GUEST", ask for a Password:

User> set var usr person

User> {nes(bnper(usr),”GUEST","ask =prompt “"Password? “" pass)}
Password?

In this example, since the username specified was not “guest”, the user was prompted for a
password.

Now, set the Username variable “usr” to the text “guest”. Then, if the Username is nor “guest”,
ask for a Password:

User> set var ysr guest
User> {nes(upper(usr),”GUEST',"ask -prompt *“Password? *" pass®)}
User>

In most cases, when using a Username “guest” to make a connection, if a Password is required
(and known) it can be automatically set to the correct input. To try this, set the Username
variable “usr” to the text “guest”. Then, if the Username is “guest”, set the password to
“netex”:

User> set var usr guest

User> {eqs(lower(usr),"guest","set var pass netex”)}
Users>

page 64 Advanced Local User's Guide 460377-02

| EXT Function

The EXT function extracts and returns a bounded sequence of characters from a string.

Format

ext{string, numberl, number2)

Where:
string a string expression in the form of a varable, literal, or function.

numberl, number2 the lower and upper boundary limits for the characters to be extracted from
‘string’. Parameter values less than or equal to zero are interpreted relative to the
end of the string.

Examples: Display the sequence “CDE” from the string “ABCDEF”;

User> text {ext(*ABCDEF",3,5)}
User: CDE

The same sequence (“CDE”) may be displayed by using parameter values relative to the end of
the string, as shown:

User> text {ext{"ABCDEF",-3,-1}}
User: CDE

Display only the Hours and Minutes of the system time:

User> text Time: {ext(time(),1,5)}
User: Time: 14:27

Define the input prompt to display “User’ and the Version Number of USER-Access extracted
from "VERSION:LOCAL"

User> set input prompt {} User {ext(version:local,1,3}}>
User 2.9>

460377-02 Advanced Local User’s Guide page 65

_ INDEX Function

The INDEX function returns the position of the second string specified within the first string,
The function returns zero if the second string is not found,

Format

index(stringl, string2)

stringl, string2 string expressions in the form of a variable, literal, or function.
Examples: Display the position of the sequence “CDE” within “ABCDEF":

User> text {index{"ABCDEF®,*CDE" J}
User: 3

Find the position of the month March in a string containing a list of the months:

User> text {index("JanFéberApanyJunleAugSepOctNovDec“,"Mbr")}
User: 7 ;

The following is an example of an index(} search that failed to find the second string within
the first:

User> text {index("abcdef*,”cat")}
User: @

page 66 Advanced Local User's Guide 460377-02

LEN Function

The LEN function returns the count of characters that make up the specified string.

Format

len(string)

Where:
string a string expression in the form of a variable, literal, or function.
Examples: Display the number of characters in "ABCDE"

User> text {len{“ABCDE'}}
User: 5

Display the length of the results of the DATE() string function:

User> text Length = {len(date())}
User: Length = 16

Display only the year portion of the system date by subtracting three from the length of the
date and then extracting the last four characters:

Usar> text Year: {ext{dote(),sub(len(date(}),3},1len(date())}}
User: Year: 1989

A simpler form of the example above is:

User> text Year: {ext(dote(),-3,0)}
User: Year: 1989

460377-02 Advanced Local User’s Guide page 67

Logical Operations

The following is a list of the operators for numerical equivalence tests:

EQ test if the first number specified is equal to the second.

NE test if the first number specified is not equal to the second.

LT test if the first number specified is less than the second.

GT test if the first number specified is greater than the second.

LE test if the first number specified is less than or equal to the second.
GE test if the first number specified is greater than or equal to the second.
Format

eq(numberl, number2, if_true [, if_false])
ne(numberl, number2, if_true [, if_false 1)
Tt (numberl, number2, if_true [, if_false])
gt (numberl, number2, if_true [, if_false])
le(numberl, number2, if true [, if_false 1)
ge(numberl, number2, if_true [, if false 1B

Where:
nuinber1, number2 numbers to be compared.
if_true a string expression whose value the function takes if the test is successful.

if_false an optional string expression whose value the function takes if the test fails. If this
argument is omitted, the function takes on the value of a null string,

Examples: Ask the user to enter a number between 1 and 10:

User> ask -prompt “Enter g # (1-18): * numl
User: Enter a # (1-10): o

Check if the number is less than or equal to 10:

User> text {Ie(hum],lo,"Goad”,“Bod")}
User: Good

Check the number for proper entry as defined in the first example, if it is between 1 and 10

User> text {ge(huhl,l,Ee(numI,IO,"Good”,"Bad'),"Bad“)}
User: Good

page 68 Advanced Local User’s Guide : 460377-02

LOWER and UPPER Functions

The UPPER function returns the upper case equivalent of a string expression, all characters

but lower case are left untouched.

The LOWER function returns the lower case equivalent of a string expression, all characters

but upper case are left untouched.

Format

upper{string)
Tower(string)

Where:

string a string expression in the form of a variable, literal, or function.

Examples: Display the lower case equivalent of “ABCdef™:

User> text {lower("ABCdef")}
User: abedef

Display the upper case equivalent of “ABCdef™:

User> text {upper("ABCdef”}}
User: ABCDEF

Display the system date in lower case:

User> text Today is: {lower{date()}}
User: Today is: thu mar 16, 1989

To display the Weekday in upper case:

User> text The Day is: {ext{upper(date(})},1,3)}
User: The Day is: THU

To set a predefined USER-Access variable "password” to

User> set var password {lower{password}}
User>

460377-02

its lower case equivalent:

Advanced Local User's Guide

page 69

MSG Function

The MSG function returns the information of the last message. MSG is most often used to
tailor the USER-Access output message format.

Format

msg{component [, facility])

Where:

component the code for the type of message data to return. Valid message components are:
Text, Facility, Code, Severity, Retry, or Purge.

Text requests the text from the message.

Facility requests the source of the message: NETEX, UA, UAxxx (where xxx
represents the host product code), SIxxx, MUZXxxx, or the operating
system mnemonic for the host generating the error.

Code requests the message number from the facility.

Severity requests the severity of the message: E, W, or I for Error, Waming, and
Informational respectively.

Retry requests whether or not the NETEX error can be retried (not fatal).
Results are either ¥ for can-be-retried or N for cannot-be-retried.

Purge will purge the message stack. One may find it useful to ensure that the i
next attempt to read a message resulted in a message from the last
command, in this case the user will need to Purge the message stack.

facility to get the message from a certain facility: NETEX, UA, UAxxx {where xxx repres-
ents the host product code), SIxxx, MUXxxx, or the operating system mnemonic for
the host generating the error. The default is UA.

Examples: Display the facility of the last error message:

User> text The Last Error Message came from: {msg{("f')}
User: The Last Error Message came from: UA

Display the text of the last error message from USER-Access:

User> text The Lost Error Message was: {msg{*t*)}
User: The Last Error Message was: Invalid command ‘oops’

Display the code of the last error message from USER-Access:

User> text The Last Error Code was: {msg("c”)}
User: The Last Error Code was: 4768

Set the OUTPUT FORMAT qualifier to display only the message text when an error occurs:
User> set output format {} {msg(" text)}

page 70 Advanced Local User's Guide 460377-02

PARAMS Function

The PARAMS function substitutes the positional parameters specified. It is important to note
that quoted parameters remain quoted and are considered one whole parameter - regardless of

imbedded spaces.

Format

params (numberl, number2 [, char])

Where:

numberl, number2 positional parameters numberl through number2 for substitution.

number2 = “0” to mean “the rest”.
char is the optional parameter separator to use. The default is a space.
Examples: Define an alias "PRINT” to display the parameters passed to it:
User> set glias print {} text {params(2,3)}
Execute the alias 'with no parameters:

User> print
User:

Now execute the alias with the parameters: this text string

User> print this text string
User: text string

Execute the alias with the parameters: this “is a” test

User> print this "is ¢" test
User: "is a" test

460377-02 Advanced Local User's Guide

Use

page 71

SLEEP Function

The SLEEP function causes USER-Access to pause or “sleep” for a specified number of
seconds. This process is not interruptible. This function results in a nuil string.

Format

sleep(number)

Where:
number number of seconds to pause/sleep.
Examples: To pause/sieep a USER-Access session for ten seconds:

User> {sleep(10)}
User>

If an error occurs during a connect command, the alias “RECONnect” will go to sleep for
thirty seconds and then attempt to connect again: :

User> set alias RECONnect {} set input continue on 1
Mores> stort: !

Hore>> con {paroms(1,0)} 1

Hore>> {eqs(status(),"S","exit“}} !

More>> {sleep(30)} !

Hore>> goto stars

page 72 Advanced Local User’s Guide 460377-02

_“,Mé'” Z v/ 71
: ‘o bff’rf' .
STATUS Func{{an’ /@,

P
The STATHYS function returns the single status character of/the previous command: § =
Success, E° = Error. Successful execution of the following/commands leave the previous
command status intact: CONTINUE, EXIT, GOTO and TEXT. This gives the user
the ability to position within a script (for example, to an error processing section) without
clearing the status from a previous failure. If any of these commands fail, an error status is
set. A status return specified by EXIT or QUIT (e.g.. EXIT ERROR) will override the pre-
vious command status.

Format

status ()

Examples: To display the output of the status function:

User> text {stotus{)}
User; S

To display the status of the last command:

User> text Last Commond {egs(stotus(),”S",“Succeeded”,”Fagiled”)}
User: Last Command Succeeded

Define the input prompt to signal a message when an error has occurred:
User> set input prompt {} {nes{status(),*S","Error ")}User>

With the above definition, issue an invalid command and then a valid command to test the
new prompt:

User> oops

User: Invalid command 'oops' (UA-4708).
Errvor User> text Correct the Prompt
User: Correct the Prompt

User>

460377-02 Advanced Local User's Guide pa

e
1]
|
(¥]

" TIME Function

The TIME function returns the system time of the local host.

Format
time([num})
Where:
num this is 2 number that specifies the format of the time. For the TIME function:
0 = HH:MM:SS nd
1 = HHMMSS

where H = Hours; M = Minutes; S = Seconds. Default is 0. Specifying a value
other than 0 or | will returm a null value.

Examples: Output the time without the colon separator:

User> text The Time is: {time(1)}
User: The Time is: 142448

Qutput the time;

User> text The Time is: {time()}
User: The Time is: 14:24:48

Redefine the input prompt to prompt with the system time:

User> set input prompt {} {time(}}>
14:25:04>

The empty braces ({}) in the above example are needed to disable string substitution until each
prompt is displayed. The new system time is then evaluated each time the prompt is displayed.

-1

page 74 Advanced Local User's Guide 460377-02

Disabling String Substitution

When USER-Access sees {string} on a command line, it immediately tries to perform string
substitution on string. To tell USER-Access to disable string substitution, place an empty {}
on the command line prior to the string substitution syntax. The typical place to do this is
during an alias definition. For example:

User> set aligs put send {} {sourcefile} {dfile}

Upon seeing the empty {} before the string substitution syntax {sourcefile} and {dfile},
USER-Access knows to not substitute the values of ‘sourcefile’ and ‘dfile” at this time. The
resulting definition for alias PUT is:

User> show alias put
User: PUT ..oivieinancnss send {sourcefile} {destinationfile}

If the empty {} had not been included during the definition above, USER-Access would have
replaced {sourcefile} and {destinationfile} by their current values at the time the alias was
defined. If they were undefined, they would have been replaced by the null string. The goal
of an alias is usually to replace the value of the variable at the time the alias is run, not when
it is defined. ‘

The empty {} is actually used as a toggle to turn string substitution on and off. In the fol-
lowing example, the first occurrence of {} turns off string substitution, which results in
{sourcefile} not being replaced by its value. The second occurrence of {} turns string substi-
tution back on. This results in {destinationfile} being replaced by its current value (assume
‘dest.new’):

User> set alias put send {} {sourcefile} {} {destinationfile}
The resulting alias definition looks like:

User> show glias put
User: PUT .veivvvncnnsss send {sourcefile} dest.new

In this case, the alias PUT becomes a send command where the destination file is always
‘dest.new’. Since {} is used as a toggle, it should only appear once within an alias definition
(including multicommand aliases) when string substitution is to be ignored for all variables
declared.

Nested String Substitution

“The string substitution syntax also allows for nested substitution. Nested substitution provides
for embedding string substitution syntax within string substitution. Figure 5 is a represen-
tation of nested substitution.

set input prompt {dfn(myprompt, "{myprompt}>", "User>")}

string subl

string sub?2
Figure 5. Nested String Substitution

460377-02 Advanced Local User’'s Guide page 75

The example above sets the USER-Access input prompt to either the value of variable
myprompt (if it is defined), or else to the string User>. Since there exists nested string substi-
tution, USER-Access first processes the innermost one (labeled string subl above) to evaluate
the variable myprompt. The double quotes outside of {myprompt} turns the resulting value
into a string literal that is then used as the second argument to the dfn() function. Once this is
done, USER-Access processes the outermost string substitution syntax (labeled string sub2
above),

All string substitution processing is performed by USER-Access from the inside out. This is
important to keep in mind when creating such things as custom prompts or scripts. Since the
inside string substitution SyRtax is processed first, it is treated as a separate entity in itself,
This is significant because it affects the use of double quotes for string literals. Normally
double quotes must be escaped when they are used within another set of double quotes in
order for USER-Access to take them literally. However, if the outer set of double quotes is
not part of the immediate string substitution syntax containing the inner set of double quotes,
then the inner set of double quotes should not be escaped. The following example illustrates
this point.

User> ask -prompt ”{upper(*enter your name*)} name

Since the outer set of double quotes (“{...}") is outside of the string substitution syntax, the
inner set should not be escaped. This is because the string substitution syntax is processed
first, resulting in the non-quoted string ENTER YOUR NAME. The outer set of quotes then is applied

to that string and the remainder of the command is processed,

Developing USER-Access Scripts Using Input Files and
Aliases

USER-Access was designed to be very easy to use for all types of users. The commands are
simple and the syntax is straightforward, However, it is often the case that a site wants to
customize the USER-Access interface to be even more simple or familiar for its users. This
“customization” is generally done by more sophisticated USER-Access users then handed back
to the general user base. This section addresses the areas important to developing
USER-Access scripts,

A script can be in the form of an input file or an alias; USER-Access treats them the same
internally. The difference is in the way they are defined. Input files are created using a
standard text editor; Aliases are created using the SET ALIAS command and require special
command line syntax. The examples that are given in this section, although they apply to all
types of scripts, are generalized to emphasize the topic of discussion and do not include the
special syntax required for creating aliases. The reader should be familiar with USER-Access
command line processing, most notably, the sections on “Special Characters” on page 47 and
“USER-Access String Substitution” on page 48.

page 76 Advanced Local User’s Guide 460377-02

USER-Access Input Files

USER-Access input files or input scripts give users the ability to write powerful program-like
procedures that can be run on several different host types, without regard to host-specific
command language differences. A USER-Access input file or input script is a file that con-
tains a list of USER-Access commands. Input scripts are created using any standard text
editor.

Assume for the following examples, that there exists an input script called HOSTDIR, shown
below, which connects to a predefined host named BETA, issues a REMOTE DIRECTORY
command, and then disconnects.

* Input script HOSTDIR - Give directory listing of
* remote host named BETA.

*

connect beta default test

remote dir

disconnect

There are three ways to make use of an input script:

1. With the INPUT command.

The INPUT command tells USER-Access to read and execute the USER-Access com-
mands in the input file given. For example:

User> input hostdir

This command tells USER-Access to look for an input script with the file specification
HOSTDIR, and then read it line by line, executing commands along the way. If the file
specification is not found, the INPUT SEARCH qualifier is used to locate the file (see
item 2).

2. Using the INPUT qualifier SEARCH.

When USER-Access reads a command from the command line, it first looks for an alias
by that name and translates it if found. If the command is not an alias, USER-Access
determines if it is a USER-Access command. If not, it looks at the INPUT qualifier
SEARCH. If that qualifier is defined, USER-Access uses the SEARCH path to find an
input file by the name of the command it read. If an input file is found, USER-Access
reads and executes it. If no input file is found, USER-Access issues an “Invalid command”
error. Therefore, the second way to use the HOSTDIR input script is to first define the
INPUT SEARCH qualifier (see the INPUT Command in “Command Descriptions” on
page 117), and then type HOSTDIR on the command line:

User> hostdir

Typing HOSTDIR here gives the appearance that HOSTDIR is actually a USER-Access
command. The INPUT SEARCH qualifier can also contain SEARCH keywords (SITE)
and (USER). Refer to “UNIX USER-Access SEARCH Keywords (SITE), (USER), and
(NONE)” on page 93 for more information.

3. On the USER-Access command line.

The third option is to specify the input file on the USER-Access command line when it is
invoked. This option is most often used when running USER-Access within a batch job.
It simply tells USER-Access to read and execute all of the commands within the input
script and then exit USER-Access. For more information, see “Running USER-Access as
a Batch Job Under UNIX” on page 97.

460377-02 Advanced Local User’s Guide page 77

| Echoing Input Scripts at the Terminal

In order to have USER-Access display the INPUT commands as they are executed, the user
must turn on input echo with the SET INPUT command:

* Echo all commands as they execute
*

set input echo on

This command can be issued interactively, prior to the INPUT command, or given as the first
command in the input file. INPUT ECHO will echo cach command as it appears prior to
string substitution. To display each input command after string substitution, turm on the
INPUT VERIFY qualifier as:

* Echo all commands after string substitution
*

set input verify on

Refer to the INPUT command in “Command Descriptions” on page 117 for more details on
these qualifiers. The section “Debugging a USER-Access Alias or Input Script” on page 89
also addresses the VERIFY qualifier.

Displaying Output and Accepting Input within a Script

The TEXT command is used to display output within a USER-Access session. For exampie,
the commands in a script to display a welcome message to a user could be:

text *********************************

text Welcome to USER-Access!
text *********************************

A TEXT string can also include USER-Access string substitution syntax {..}. Therefore,
string literals, string variables, or string functions can be substituted within a TEXT command
line to provide additional information. For example, to enhance the example above, the string
function DATE() could be used, along with qualifier values VERSION and DIRECTORY
from the LOCAL environment:

text **

text Welcome to USER-Access Version {version:local}.
text

text {date()}.

text

text Your current directory is: {directory:local}.

text **

The ASK command can be used to make scripts more friendly for novice users. For example, -
a TRANSFER script could be defined that would prompt a user for worthwhile information
then execute the commands on the user’s behalf:

page 78 Advanced Local User’s Guide 460377-02

* This is a sample TRANSFER script

*

ask -prompt "Transfer being made to what host? " host
ask -prompt "User ID on host {host}? " wuid

ask -secure -prompt "Password for user {uid}? " pw
ask -prompt "File to be transferred? " file

connect -quiet {host} {uid} {pw}

send -quiet {file}

text kkddkkdhkhkrAi R hhkkrthhkdx

text File '{file}' has been transferred to {host}.
text kR EAREEA Rk kA b hhk i

disconnect -guiet

To execute the script (if appropriate setup was done by the site administrator), the user would
type only TRANSFER:

User> transfer

Transfer being made to what host? BLUESKY
User ID on host BLUESKY? guest

Password for user guest?

File to be transferred? tmpfile
REFEkhkkhkhhkhhkhkththkkk

File 'tmpfile' has been transferred to BLUESKY.

IkAkhkkkkkEkEkkkkkkiikhkk

User>

Passing Parameters to a Script

Parameters may be passed to a USER-Access script. These parameters are referred to as posi-
tional parameters because they are identified by their position on the command line. For
example, the following INPUT command passes the input file SETUP three positional param-
eters, the first positional parameter is HOSTA, the second is SMITH, and the third is JOHN:

User> input setup hosta smith john

An input file can be passed several positional parameters. Each parameter is identified in the
input file by its position number in braces ({1}, {2}, {3}, etc.). In the example above, HOSTA
is represented by {1} in the input script SETUP, SMITH is {2}, and JOHN is {3}. In general,
the mapping is :

{0} ... positional parameter zero - the entire parameter string

{1} ... positional parameter one
{2} ... positional parameter two

{n} ... positional parameter n

Positional parameters are used with an input script using the syntax described above. For
example, the file SETUP may contain the three lines:

text {3} {2} is attempting to connect to host {1}

connect {1} {2} {3}
text hello {3} {2}. How are you?

460377-02 Advanced Local User’s Guide page 79

When the INPUT command is issued, USER-Access performs string substitution. After string
substitution the cornmand lines appear as:

User> input setup hosta smith john

text john smith is attempting to connect to host hosta
connect hosta smith john

text hello john smith. How are you? -

To pass -multiple words or strings with embedded blanks as a single parameter, enclose them in
double quotes. Refer again to the example above. If the third parameter was JOHN HENRY
instead of just JOHN, the string JOHN HENRY would have to be enclosed in double guotes:

User> input setup hosta smith °john henry®

Now, parameter | is HOSTA, parameter 2 is SMITH, and parameter 3 is JOHN HENRY.
Up to this point positional parameter passing and input prompting has been discussed. The
next section combines these features by making use of string functions.

Using String Functions within a USER-Access Script

In order to gain even more flexibility, a script can be designed to use positional parameters if
they are passed, and to prompt for input in the absence of positional parameters. This added
feature of scripting makes use of USER-Access string functions. (See the section entitled
“String Functions” on page 53 for a more detailed discussion.)

In the sample below, the string function ndf(), (if Not DeFined), is used. ndf() tests it’s first
argument (variable 1, 2, 3, or 4) to see if it’s defined. If it's not, ndf() executes it’s second
argument (ASK -prompt ..). If argument 1 is defined, ndf() executes argument three
(optionally left out). The new definition of the TRANSFER script is:

* This is a sample TRANSFER script that uses String Functions

&

{ndf(1, "ask -prompt "“Transfer being made to what host? "" 1")}
{ndf(2, "ask -prompt ""User ID on host {1}2 v 2y}

{ndf(3, "ask -secure -prompt ""Password for user {2}7 " 3%y}
{ndf(4, "ask -prompt ""File to be transferred? "" 4"}}

connect -quiet {1} {2} {3}

send -quiet {4}

text ERAEXAL A LA RTE TR KRR HH %%

text File '{4}' has been transferred to {1}.

text RhkEkhkkkhdkkdhhhkhrkdd ki
disconnect -quiet
The logic of the script when invoked is:

* If no parameters are on the TRANSFER command line, prompt the user for all four
pieces of information and read them into variables 1,2, 3, and 4.

* If one parameter is passed, use it as variable 1 (Fost), and prompt for the other three.

* If a second parameter is passed on the TRANSFER command line, use it as variable 2
(User id), and prompt for the third and fourth variables.

¢+ If three parameters are passed on the command line, read them into variables 1, 2, and 3
(Password) respectively and prompt only for the fourth variable.

page 80 Advanced Local User’s Guide 460377-02

* If four parameters are passed on the command line, read them into variables 1, 2,3 and 4
(file) respectively, and do not prompt at all.

* Finally, execute the remaining commands, substituting the variables or parameters as
needed.

The following is an example execution of the TRANSFER script with two parameters passed
to it:

User> transfer BLUESKY guest
Password for user guest?

File to he transferred? tmpfile
ThkAktkkhkkkkrhkhkhhkkhkkkkxs

File "tmpfile' has heen transferred to BLUESKY.

AEERTLAEARRAARAEEARE kAL
User>

Since two parameters were passed, the script prompted only for the last two. Scripts like this
one are especially useful when there is a need to run both interactively and in batch. Batch
jobs require all the parameters to be defined since they cannot prompt for user input.

Using USER-Access Labels and GOTOs

To make USER-Access scripts even more powerful, users can merge string functions with
GOTO processing. The GOTO command instructs script processing to continue at the speci-
fied label, either backwards or forwards. The format is:

Command Parameters
GOTO Tahel

where label is an alphanumeric string from one to twenty characters (including underscores or
other special characters) in length. All labels are case sensitive and must appear somewhere
within the current input level. That is, if the GOTO appears within an input script, the
matching label must also be in that input script. If the GOTO appears in an interactive input
level, the matching label must aiso be found within that interactive level. The format of a
command line that contains a label is:

tabel: [command]

The colon immediately following the label is required. The label can appear on a line by itself,
or it may be followed by a valid USER-Access command or alias. The following is an
example of a simple loop alias:

* Sample GOTO/Label script. Send 5 files
* having the names FILE1 thru FILES.

*

set variable count 1

LOGOP:

send FILE{count}

set variable count {inc(count)}

{1e(count, 5, "goto LOOP")}}

*

text A1l files sent.

460377-02 Advanced Local User’s Guide page 81

The variable count is first initialized to 1. The next line simply declares a label called LOOP.
The SEND command is then issued for a file named FILEx where x is the current value of
count. Following that, the variable count is reset to its value plus one (incremented by one).
Finally, a check is made on the value of count. If it is less than or equal to 5, the GOTO
LOOP command is substituted as the next USER-Access command and processing branches
up to label LOOP. If count exceeds 5, processing falls through to the next command outside
of the loop.

It is important to remember that USER-Access treats labels as case sensitive. Therefore, one
must make sure that a label specified on a GOTO command matches the actual label’s case
exactly. Duplicate labels (labels that have the same name with identical case), are considered
an error.

Whenever a GOTO or a label is encountered during command line processing, all future com-
mands get stored internally within USER-Access. The number of commands that can be
stored is limited by the amount of available memory allocated for the process which varies
from machine to machine. The best practice is to avoid letting scripts that contain GOTOs
become too large.

-Since scripting is really an interpretive command language, USER-Access must parse each
command as it executes it. Therefore, an error within a script will not be caught until the
script is run and the erroneous condition is encountered. A missing label, for example, will
result in the entire script being read before an error message is given.

GOTO and labels may also appear at the interactive session level. Refer to the GOTO
-command in “Command Descriptions” of this manual for further information.

- Using the ON (ERROR/INTERRUPT) Command

A useful command for building more robust scripts is the ON command. ON has the format:

Command Parameters
ON exception [action]
where

exception is any one of the following:

ERRor - on USER-Access error perform action
INTerrupt on keyboard interrupt perform action
LOCal_error on LOCAL command error perform action
REMote_error on REMOTE command error perform action

action is any single valid USER-Access command or alias, the most likely of which being:

CONTinue ignore the exception

EXit exit the current USER-Access session
GOTO GOTO a specified label

INput input a specified USER-Access script
TEXT display a message

<mnone > turn off the specified exception

If action is more than one command, the results are unpredictable.

The ON command allows a user to catch anyone of the exceptions listed above and perform a
predefined action. It is most useful within USER-Access scripts for tailoring exception han-

page 82 Advanced Local User’s Guide 460377-02

dling. ON commands generally appear at the beginning of a USER-Access script since they
set up actions to be taken on future processing within that script. For example, the following
script catches any keyboard interrupt (initiated by the user), and automatically causes the
session to terminate:

* Cause keyboard interrupt to exit session
*

on interrupt exit

connect hosta guest netex

send sr¢_file

disconnect

The ON INTERRUPT exception as shown above, establishes an alternative action to be taken
in the case of a user generated keyboard interrupt. By default, without an ON INTERRUPT
specified, USER-Access terminates all input levels (if within nested input scripts), and returns
to the interactive level. If the INPUT CONTINUE qualifier was set, USER-Access terminates
only the current input level and continues processing in the next level up.

The ON ERROR exception establishes an alternative action to be taken when a USER-Access
error occurs. Without an ON ERROR specified, USER-Access terminates all input levels (for
nested input scripts), and begins processing at the interactive level. If the INPUT CON-
TINUE qualifier was set, USER-Access displays the error but continues processing the next
command. The ON ERROR command allows for more flexibility on an error condition.

The ON LOCAL_ERROR and ON REMOTE_ERROR exceptions give the user the ability to
take special action when a LOCAL or REMOTE host command fails. On hosts that support
it, a special LOCAL or REMOTE STATUS qualifier will be set reflecting that host’s error
code for the particular error condition. Normally, without ON LOCAL_ERROR or ON
REMOTE_ERROR specified, USER-Access just ignores host errors and continues processing
the next command.

For further details about the ON command, see “Command Descriptions” on page 117.

Checking Command Status

The status() function allows the user to write scripts that check the status of the previous
command and take action accordingly. A simple example appears below:

&*

* Print status of a single file transfer.

*®

set input continue on

send -quiet src_file

text Transfer {egs(status{), "S", "Successful.", "Failed.")}

The example above demonstrates how status() can be used to print the results of the previous
command (in this case SEND). Status() returns either an “S” for Success, or an “E” for Error.
Since it is a string function, the result is a string. Status() can be combined with any other
string function or USER-Access command to enhance script processing, Above it is used with
the eqs() function to check the results which are then printed by the TEXT command.

Refer to the section on string functions for more details and examples of the status() function.

460377-02 Advanced Local User's Guide page 23

| Creating USER-Access Aliases

Aliasing is simply another form of USER-Access scripting. Although the previous sections
discussed scripting in the context of INPUT files, everything described applies to USER-Access
aliases. Aliases can be thought of as USER-Access input files. In fact, a multicommand alias
(discussed later) is treated in exactly the same way. The difference between a multicommand
alias and an input script is the way in which they are defined. As mentioned earlier, input
scripts are defined using a standard text editor; Aliases are defined using the SET ALIAS
command,

The alias capabilities of USER-Access provide a means of creating a custom command set that
can be used by all users or a group of users. An alias is simply a new name for a
USER-Access command or set of commands. The following example shows how to create a
simple alias (or new command) called FETCH that is equivalent to the RECEIVE command:

User> set alias fetch receive
To display the definition of the new alias, use the SHOW ALIAS command:

User> show alias fetch
User: FETCH receive

The alias name FETCH appears on the left and its translation or definition appears on the
right. Now to transfer a file from the remote host to the local host, either the RECEIVE
command or the FETCH alias can be used. All qualifiers and parameters for the RECEIVE
command are also valid for FETCH since USER-Access just maps FETCH to RECEIVE.
The RECEIVE command is executed, but as far as the user is concerned, the command exe-
cuting is FETCH. Therefore, the following are equivalent;

User> fetch -quiet -mode character sourcefile
and,
User> receive -quiet -mode character sourcefile

Aliases can be more complex than a single mapping of FETCH to RECEIVE. For example,
the FETCH alias can be defined to include parameters or qualifiers as part of its definition.
Below is an example of the FETCH alias that includ