
MTU-H363L-3.4.3

H363L USER-Access®

for HP x86 L-Series NonStop Systems

Release 3.4.3

Memo to Users

November 2019

© 2019 Network Executive Software, Inc.
6450 Wedgwood Road N Ste 103

Maple Grove, MN 55311

MTU-H363L-R3.4.3 Page 2

Document Revision Record

Revision Description

MTU-H363L-R3.4.1 First revision of document associated with H363L Release 3.4.1

MTU-H363L-R3.4.2 Corrected Restore call, minor fixes.

MTU-H363L-R3.4.3 Add support for ephemeral port ranges; maintenance

MTU-H363L-R3.4.3 Page 3

Introduction
This document contains information on release 3.4.3 of the Network Executive Software H363L USER-

Access product for HP x86 L-Series NonStop systems including product installation instructions.

This document should be reviewed in its entirety before the product is installed.

Prerequisites

Prerequisites for this product are:

• HP Integrity NonStop host processor running NonStop OS release L16.05 or above.

• One or more Ethernet LAN interfaces.

Related Publications

The following book provides more information about this software product:

H363 USER-Access
®

 for HP NonStop Systems

Software Support Limitations

Modifications to H363L that are not specifically authorized by NetEx Software are prohibited.

Any unauthorized modifications to H363L may affect its operation and/or obstruct NetEx Software’s ability

to diagnose problems and provide corrections. Any work resulting from unauthorized modifications shall

be paid by the customer at NetEx Software’s then-current support rates and may result in the immediate

termination of warranty/support coverage.

MTU-H363L-R3.4.3 Page 4

Service Notes
• The –CREATE REPLACE qualifier does not work correctly when the source and destination files are

the same (i.e., the source and destination volume. subvolume and file name are exactly alike). If a

SEND or RECEIVE command is issued this way, the source/destination file will be empty.

• The parameters SI_USERNAME and SI_PASSWORD should be defined in the SICONFIG file as part

of the standard install. Failure to define a valid non-privileged username/password can result in a

potential security loophole. Valid SI_USERNAME and SI_PASSWORD parameters allow the Service

Initiator to reset itself back to a non-privileged user ID following each successful login. It also allows

the Service Initiator to be stopped (e.g., STOP $SI) by the user designated as SI_USERNAME. This

could be a standard OPERATOR account but should not be SUPER.SUPER or group.SUPER (a group

manager). Any UID of *,255 should be avoided.

If SI_USERNAME or SI_PASSWORD is missing or invalid, appropriate warning messages will be

displayed in the Service Initiator log file (SILOG). However, the Service Initiator will continue to

operate.

The SI_PASSWORD can be encrypted in the SICONFIG file. To do so, use the ENCRYPT string

function (or ENCRYPT alias) provided with USER-Access. Refer to the section titled “Password

Encryption” for more information on password encryption.

• Due to USER-Access enhancements to support NonStop EXPAND networks, previous support for 5-

character process names (e.g., $USERA) may no longer be valid. Limit any USER-Access client and

server process names to a maximum of 4 characters (plus the dollar sign).

• Three or more consecutive failures to logon through the Service Initiator (via the USER-Access

“CONNECT” or “LOGIN” command) will cause the Service Initiator to be suspended for 60 seconds

before returning the message ‘Invalid username or password (SI363-8002)’. This delay will be

experienced by the user currently connecting to the HP NonStop host. Other connect attempts during

this interval will return a “service not offered” message. This is a result of the VERIFYUSER system

service.

• HP NonStop local/remote exit status needs more explanation.. The command is assumed to complete

successfully (status = STOP). Then each line of the output stream is scanned for the string

‘ABENDED:’ as the first eight characters. If this string is detected, the command is considered to have

failed (status = ABEND). The ON commands for LOCAL_ERROR and REMOTE_ERROR will

respond to this command failure.

In order for USER-Access to determine exit status from a TACL command, USER-Access now also

recognizes the string ‘TACLEXIT:nnn’. If this string is detected, the exit status becomes ‘nnn’.

• File transfer modes BACKUP, RESTORE and COPY do not capture/restore the file characteristics

during peer-to-peer transfers unless they are used with BACKUP/RESTORE. BACKUP, RESTORE,

and COPY modes do not save file characteristics outside of the NonStop BACKUP utility.

• Execution of the first local/remote NonStop command will experience a delay while activating the

command interpreter. This same delay is experienced following a previous command abort (due to a

keyboard interrupt) or when the command interpreter is changed (e.g., SET LOCAL/REMOTE

COMINT) since a new command interpreter is being activated.

• It is possible to write a NonStop USER-Access script that contains a tight loop during which keyboard

interrupts are ignored. On tight loops (e.g., LOOP: GOTO LOOP) keyboard interrupts have no effect.

MTU-H363L-R3.4.3 Page 5

Installation
This section provides complete installation procedures for the H363L x86 L-Series NonStop USER-Access

product.

Before you Begin

• Please review all of the information in the “Service Notes” section before proceeding with the

installation.

• If your system is currently running a previous release of USER-Access, you can preserve it by renaming

the existing USER-Access root subvolume. This allows easy recovery if the current installation fails.

You may also wish to copy some of the site files from the previous release once the current release is

installed. Use FUP to rename all the files in the current subvolume.

For example, if the current release is installed in $SYSTEM.UA, rename all of the files to the

subvolume $SYSTEM.UASAV1 as follows:

15> FUP RENAME $SYSTEM.UA.*, $SYSTEM.UASAV1.*

Once the new release is installed, site control files (e.g., SCLIENT) can be copied from the renamed

subvolume to the new USER-Access root subvolume.

• The installation procedure assumes your logon command interpreter is a named TACL process. If this

is not the case, logon to a named TACL process before continuing.

• The USER-Access release is loaded into a distribution volume.subvolume and is then installed into the

target volume.subvolume. Existing files in the target volume.subvolume are replaced with the new

release files. Any user-modified control files are automatically preserved.

Nothing is modified in the distribution volume.subvolume during the installation process allowing

repeated installations into different target volume.subvolumes, each with different install options. To

preserve disk space the distribution volume.subvolume can be deleted once USER-Access is fully

installed into the target volume.subvolume.

The distribution volume.subvolume requires less than 2000 pages (4 Mbytes) of disk space. The target

volume.subvolume requires less than 2500 pages (5 Mbytes) of disk space.

• The installation procedures and examples assume a distribution volume.subvolume of

“$SYSTEM.UA343” and a target volume.subvolume of $SYSTEM.UA. However, any valid

volume.subvolume (with adequate space) can be selected. If you choose an alternate

volume.subvolume, be sure to replace $SYSTEM.UA343 or $SYSTEM.UA with the alternate

volume.subvolume in subsequent commands.

• TCP port number 6900 is used by the USER-Access Service Initiator as its default listen port. This is

the recommended port number for use by USER-Access. However, if other applications require this

port number, see “Appendix A: Updating the TCP/IP Network Control Files” for instructions to change

these defaults.

MTU-H363L-R3.4.3 Page 6

Installation Procedure

To perform a complete installation and verification of this product, follow the steps in this section.

Step 1. Select USER-Access volume.subvolume

Set your current volume to volume.subvolume that you will copy the USER-Access distribution file to:

16> VOLUME $SYSTEM.UA343

Step 2. Download the Distribution

From either the NetEx Software download service (contact Support) or the distribution CD, perform a

binary file transfer of UA343PAK to the distribution volume.subvolume you selected in the previous step.

Step 3. UNPAK the Distribution

Issue the following UNPAK command:

17> UNPAK UA343PAK,*.*.*,LISTALL,MYID,TAPEDATE,VOL <$vol.subvol>

The list of restored files should agree with the file list in the Distribution Contents section.

Step 4. Install the Software from the Distribution

The USER-Access INSTALL procedure is a TACL routine that prompts for the site install options and

invokes another TACL routine named MAKE with the selected parameters.

The Installation Process

Invoke the USER-Access INSTALL procedure using the prompts shown below. Default responses are

enclosed in square brackets:

$SYSTEM.UA343 6> run install

The target volume.subvol defines the location where USER-Access

is installed.

Enter the target volume.subvol [$SYSTEM.UA]?

Starting USER-Access install

Copying .. UAMACROS

FILES DUPLICATED: 1

Copying .. SISTART

FILES DUPLICATED: 1

Copying .. SICONFIG

FILES DUPLICATED: 1

Copying .. SHOWLOG

FILES DUPLICATED: 1

Copying .. UASRVR

FILES DUPLICATED: 1

FILES DUPLICATED: 1

MTU-H363L-R3.4.3 Page 7

FILES DUPLICATED: 1

FILES DUPLICATED: 1

FILES DUPLICATED: 1

FILES DUPLICATED: 1

FILES DUPLICATED: 1

FILES DUPLICATED: 1

FILES DUPLICATED: 1

#output Linking.....

Linking.....

eld /in LINKIN2 , out UALINK.LINKIN2 /

eld /in LINKIN3 , out UALINK.LINKIN3 /

eld /in LINKIN4 , out UALINK.LINKIN4 /

eld /in LINKIN5 , out UALINK.LINKIN5 /

FILES DUPLICATED: 1

FILES DUPLICATED: 1

FILES DUPLICATED: 1

FILES DUPLICATED: 1

Finished USER-Access install

$SYSTEM.UA 7>

Be sure to scan the generated output for any errors or warning messages.

Note: During the installation procedure (between “Starting …” and “Finished …”) the install program does

the following:

• Copies and edits the USER-Access control files, substituting the target volume.subvolume for the

USER-Access root directory. Any user modified control files (e.g., SCLIENT, SSERVER, and so on)

are preserved with an appropriate message displayed.

• Generates a ROOT object module defining the target volume.subvolume as the USER-Access root

directory.

• Links the USER-Access modules: CLIENT, SERVER, SVCINIT, and CONTROL.

• Sets the file security on the USER-Access control files and executable images.

Step 5. Start the Service Initiator

The Service Initiator is a program that services USER-Access CONNECT or LOGIN requests from hosts

on the network. It runs as a NOWAIT process named $SI. To use an alternate process name (e.g., running

multiple Service Initiators) replace $SI with a valid process name in the following commands.

Set your current volume to the USER-Access target volume.subvolume:

19> VOLUME $SYSTEM.UA

You must make any site-specific changes to the SICONFIG file before starting the Service Initiator. Refer

to the section on “Service Initiator Keywords” for more details. Be sure to define the parameters

SI_USERNAME and SI_PASSWORD. Remove the comment character (#) from the sample lines and

change the group.userid and password entries to that of a valid non-privileged account. This account should

not be SUPER.SUPER or group.SUPER (i.e., the UID should not be *,255). Make any other changes

appropriate for your site:

20> EDIT SICONFIG

 .

 .

MTU-H363L-R3.4.3 Page 8

To activate a new Service Initiator, issue the following command:

21> RUN SISTART $SI

To verify that the Service Initiator is running, the named process $SI should display when the following

command is issued:

22> STATUS $SI

Once the Service Initiator has started successfully, users on remote hosts can connect into the NonStop host

by providing a valid username and password. The Service Initiator will activate a server process with a

home terminal of $SI. A site manager can monitor the amount of USER-Access activity by listing the active

processes associated with $SI (i.e., STATUS *, TERM $SI).

Step 6. Verify USER-Access

A simple verification command procedure has been supplied as part of the USER-Access release. This

verification procedure prompts you for the name of the local host and a valid username/password on this

host (for verification purposes, the username/password specified should at least have the privileges you

do - specify your username/password to be safe). It attempts to connect back to the host, logon, and send

and receive several files.

To run the verification command, first load the UAMACROS file to define the TACL macro USER (used

to invoke the USER-Access CLIENT) along with other USER-Access macros:

24> LOAD UAMACROS

Then invoke the USER-Access client with the VERIFY script:

25> USER VERIFY

There should be several messages printed to your terminal followed by a final “Verification Successful”

message. If an error is encountered during the verification, the procedure will terminate and an error

message will be printed.

This completes the installation of USER-Access on your client host.

Making USER-Access Available To Other Users

In order to make USER-Access easily available to other NonStop users, load the TACL macros found in

the file $SYSTEM.UA.UAMACROS from your site startup files (TACLLOCL or TACLBASE) or from

your individual user startup file (TACLCSTM). This allows users logging into TACL to invoke the USER-

Access client by simply typing “USER”. If “USER” conflicts with other site definitions, the recommended

alternative is “USERA”.

To automatically start the Service Initiator following a system RELOAD, run the

“$SYSTEM.UA.SISTART” command as part of the reload process. Make sure any network processes have

been started first.

MTU-H363L-R3.4.3 Page 9

Update Summary

Release 3.4.3

This release is functionally compatible with the 3.4.3 release of H363I with the following issues addressed:

8473 Control SERVER TCP port range through SVCINIT

8336 Hostnames of all Numbers does not work; now documented

8508 Encrypt missing from help functions output

Release 3.4.2

This release is functionally compatible with the 3.4.2 release of H363I which incorporates the corrected use

of Restore.

8507 Correct create line to entry-sequenced

8481 FILE_GETRECEIVEINFO_ maximum reply count is unsigned

8482 Help is not available for 'logins' alias

3483 ENCRypt alias forces username to uppercase

8484 LOGINS alias does not expand username in encrypt function

Release 3.4.1

This is a new product release, but functionally compatible with H363I release 3.4.1.

MTU-H363L-R3.4.3 Page 10

Appendix A: Updating the TCP/IP
Network Control Files
The network control file $SYSTEM.ZTCPIP.SERVICES can be updated to change the USER-Access

default.

You must first select a unique port number. Port numbers in the range 0-1023 are reserved for TCP network

services. USER-Access uses port number 6900 as the default. For example, add the following line to the

end of the file:

user 6900/tcp USER

MTU-H363L-R3.4.3 Page 11

Appendix B: Running with TCP/IP over
Multiple Ethernet Adapters
This section describes how USER-Access can be configured on a NonStop system with multiple Ethernet

adapters. This configuration is most often used to increase aggregate TCP/IP performance from a single

system. In a configuration such as this, the NonStop host has a TCP/IP hostname for each Ethernet adapter,

thus the two Ethernet adapters make the NonStop function as two TCP/IP hosts on the network. This section

shows how to select an adapter when running USER-Access.

An example of a NonStop system is one that has two TCP/IP processes running, one for each Ethernet

adapter installed. The first TCP/IP process is named $ZTC0 and is identified by TCP/IP hostname TAN0.

The second TCP/IP process is named $ZTC1 and is identified by TCP/IP hostname TAN1.

The key to running USER-Access on a particular Ethernet adapter is to set the

“TCPIP^PROCESS^NAME” environment variable to the proper value. This is done with the NonStop

“PARAM” command. If this variable is not set to a particular TCP/IP process name prior to running USER-

Access, the default process name will be used (the default is setup when NonStop TCP/IP is installed).

The rest of this section describes:

• Running the USER-Access TCP/IP Client over multiple Ethernet adapters.

• Running the USER-Access TCP/IP Service Initiator and Server over multiple Ethernet adapters.

Running the USER-Access TCP/IP Client

The USER-Access TCP/IP Client can be started such that it will run using either TCP/IP process. If a

TCP/IP process name is not specified prior to invoking the client, the default TCP/IP process name is used.

For example, to run the USER-Access client on TCP/IP process name $ZTC0, issue the following:

TACL> add define =tcpip^process^name, file $ztc0

TACL> user

To run the client on TCP/IP process name $ZTC1, the following commands should be issued:

TACL> add define =tcpip^process^name, file $ztc1

TACL> user

The commands to run the client could be defined in a TACL macro to automatically start the client on a

particular TCP/IP process name. For example, to define a TACL macro named USER0 to always start the

client on TCP/IP process $ZTC0, put the following commands in your system or user TACL script:

?section user0 macro

add define =tcpip^process^name, file $ztc0

user %*%

Running the USER-Access TCP/IP Service Initiator
and Server

In order to connect into this example NonStop system over either Ethernet adapter, two different service

initiators must be started - one for each TCP/IP process. Then one can access this NonStop by connecting

to hostname TAN0 or TAN1. Given two TCP/IP processes ($ZTC0 and $ZTC1), the following steps will

MTU-H363L-R3.4.3 Page 12

start two independent Service Initiators, one will offer service USER on $ZTC0 and the other will offer

service USER on $ZTC1:

1. Start the editor and create a new file that will start both Service Initiators.

TACL> EDIT $system.ua.GOSI

The following log and configuration file names should not be qualified with a $volume.subvolume

because they are created in $SYSTEM.UA (or where USER-Access was installed).

Edit the following lines into the file to start the Service Initiators:

?TACL MACRO

ADD DEFINE =TCPIP^PROCESS^NAME, FILE $ZTC0

RUN $system.ua.SISTART $SI0 SILOG0 SICFG0

ADD DEFINE =TCPIP^PROCESS^NAME, FILE $ZTC1

RUN $system.ua.SISTART $SI1 SILOG1 SICFG1

2. Make a copy of the Service Initiator configuration file for $ZTC0.

TACL> FUP COPY $system.ua.SICONFIG $system.ua.SICFG0

Start the editor with the file $system.ua.SICFG0 and find the following line:

USER SERVER run $system.ua.uasrvr /name/ -si -service %s

Add parameters to the line to indicate the TCP/IP process name to use for the USER-Access server:

USER SERVER run $system.ua.uasrvr -tcp $ZTC0 /name/ -si

-service %s

3. Make a copy of the Service Initiator configuration file for $ZTC1.

TACL> FUP COPY $system.ua.SICONFIG $system.ua.SICFG1

Start the editor with the file $system.ua.SICFG1 and find the following line:

USER SERVER run $system.ua.uasrvr /name/ -si -service %s

Add parameters to the line to indicate the TCP/IP process name to use for the server:

USER SERVER run $system.ua.uasrvr -tcp $ZTC1 /name/ -si

-service %s

MTU-H363L-R3.4.3 Page 13

Appendix C: Stopping the Service
Initiator
The Service Initiator can be stopped by using the Service Initiator Control program

$SYSTEM.UA.CONTROL. To stop the Service Initiator, enter:

24> RUN $SYSTEM.UA.CONTROL STOP -H host

Substitute your local host name for ‘host’.

MTU-H363L-R3.4.3 Page 14

Appendix D: Service Initiator Keywords
The Service Initiator configuration file, $SYSTEM.UA.SICONFIG, contains a list of keywords that can

be set to alter the way the Service Initiator operates for a given SERVICE being offered. Each keyword is

listed here along with a brief description of the value that can be assigned to it:

SI_USERNAME

The group.userid of a non-privileged account used to reset the Service Initiator back to a non-

privileged state following a successful logon. The username should not be SUPER.SUPER or

group.SUPER (i.e., a UID of *,255).

SI_PASSWORD

The password associated with the account specified for the SI_USERNAME parameter. The

SI_PASSWORD value can be encrypted. To do so, use the ENCRYPT string function (or

ENCRYPT alias) provided with USER-Access. Refer to the “Password Encryption” section of this

document for more information on password encryption.

SERVER

Specifies the command that is used to invoke or run the USER-Access server. The ‘%s’ that appears

in this string marks the command line position where the service name to offer is passed (e.g.,

USER001). The ‘%s’ can also be replaced with a port range (e.g. 6900:6905) which will cycle if

a tried port is unavailable.

COMMAND

The command interpreter used for logon and activating the USER-Access server. Note that this

command interpreter has no relationship to the command interpreter used for local or remote

command execution. TACL is the default.

CPU

A round-robin list of CPU numbers for use by the USER-Access servers. By default, all USER-

Access servers are started on the same CPU as the Service Initiator. The server load can be balanced

by providing a list of CPUs on which to execute (e.g., CPU 0 1 2 3). A single CPU can be favored

by repeating it in the list (e.g., CPU 0 1 1 2 3). The Service Initiator CPU is represented by the

value -1 (e.g., CPU -1 4 alternates between the Service Initiator CPU and CPU #4).

Note: On systems where the $CMON process makes CPU assignments this parameter will have no

effect.

USERNAME

Specifies the guest username if none is provided on the connect request.

PASSWORD

Specifies the guest password if none is provided on the connect request.

OPERATOR

Specifies a password that is required when issuing commands through the CONTROL program

(e.g., for shutting down the Service Initiator).

LOGTIMEOUT

Specifies the logon timeout in seconds. This is used to terminate a logon request that for some

unknown reason, is hanging around.

MTU-H363L-R3.4.3 Page 15

MINIMUM

Specifies the minimum session number that will be offered for this service. For example, a

MINIMUM value of 5 would result in SERVICE “USER” being offered as “USER005” up to

MAXIMUM (below).

MAXIMUM

Specifies the maximum session number that will be offered for this service. A value of 30, for

example would, result in the last offer of “USER” being “USER030”, before the offers started over

at MINIMUM.

TRACE

Allow different levels of tracing for the Service Initiator. Refer to the comments in the configuration

file for a description of the different trace levels.

VERBOSE

Specifies whether the LOGON output is displayed back to the connecting user. The LOGON output

is the normal TACL startup information that displays when a user logs onto a NonStop system.

MTU-H363L-R3.4.3 Page 16

Appendix E: Internal Features

Password Encryption

The string function ENCRYPT has been added to USER-Access. The purpose of this function is to encrypt

host passwords which later will be used by USER-Access to establish host connections. This approach

eliminates the security risk of having readable (clear-text) passwords stored in files.

Format:

encrypt(password, [username])

Where:

password

Specifies the password you want to encrypt. The encrypted form of this password is returned by

the ENCRYPT string function. The encrypted form can be stored in script files containing USER-

Access CONNECT commands.

username

Optionally specifies the username associated with the local USER-Access process that will issue

the CONNECT command. This username is used as a secondary encryption key for the specified

password. When USER-Access is later run it queries the operating system for the username running

the current process. USER-Access then uses this username as one of its keys in decrypting the

password. The value for username must be entered in uppercase to match the username value

returned by the NonStop operating system. A value of ‘*’ (single asterisk) tells the USER-Access

ENCRYPT function to use the current username running the USER-Access process as the

secondary key. You must be running as the same user which will later run USER-Access to issue

the CONNECT command.

For example, encrypt the password COBRA using the NonStop username SUPER.GEM1 as the local

username for secondary encryption. Use the USER-Access TEXT command to display the encrypted

results:

User> text {encrypt(“COBRA”, “SUPER.GEM1”)}

User: *249eece8e4203b189

The ENCRYPT Alias

To simplify the use of the ENCRYPT string function, an ENCRYPT alias is provided in the SCLIENT

startup file in the USER-Access distribution. The ENCRYPT alias definition is shown:

set alias ENCrypt {} {dfn(1, "goto skip")} !

 ask -secure -prompt "Enter password? " 1 !

 ask -prompt "Enter optional username (or '*')? " 2 !

 skip: set global pw {encrypt(1, upper(2))} !

 text The encrypted password is {pw}

For example, the ENCRYPT alias could be used to encrypt the same password COBRA with the same

secondary key SUPER.GEM1 shown previously:

MTU-H363L-R3.4.3 Page 17

User> encrypt
Enter password? COBRA (password does not display)

Enter optional username (or '*')? SUPER.GEM1

User: The encrypted password is *249eece8e4203b189

Note the following items regarding the ENCRYPT alias:

1. The password is prompted in -SECURE mode to avoid displaying on the terminal.

2. The ENCRYPT alias can be invoke with ‘password’' and optional ‘username’ passed as alias

parameters to avoid prompting. However, the password will display.

3. The optional ‘username’ is forced to uppercase using the UPPER string function.

4. The resulting encrypted password is stored in a global variable PW for later reference.

Examples

Example 1: Encrypting Passwords Stored in a USER-Access Input
Script File

Suppose a job running under the local NonStop username NSC.JONES inputs the USER-Access script

$SYSTEM.SCRIPTS.MVS1 during program execution and the script $SYSTEM.SCRIPTS.MVS1

contains the following line:

CONNECT mvs1 admin7 secret

To avoid storing the password ‘secret’ in readable form in the script file, the password is encrypted by

invoking the USER-Access client and using the ENCRYPT alias:

User> encrypt secret NSC.JONES

User: The encrypted password is *26f17e2a4c9c65c56

Username NSC.JONES is specified because that is the local NonStop username under which the USER-

Access job that uses the connect/login information will run. Using a local text editor, modify the input script

$SYSTEM.SCRIPTS.MVS1 to look like:

CONNECT mvs1 admin7 *26f17e2a4c9c65c56

Example 2: Using USER-Access to Generate the Input Script File

As you can see in the ENCRYPT alias definition, the global variable ‘pw’ is set to the encrypted password

value. This value can be used to generate an input file containing the USER-Access CONNECT command

to be later referenced by a USER-Access script. We can use the USER-Access OUTPUT command to

generate the script file $SYSTEM.SCRIPTS.MVS1 to connect to the host ‘mvs1’ as user ‘admin7’ with the

password ‘secret’ (as shown in example #1):

User> encrypt secret NSC.JONES

User: The encrypted password is *26f17e2a4c9c65c56

User> set output prefix

User> output $system.scripts.mvs1

User> text CONNECT mvs1 admin7 {pw}

User> output

The resulting file $SYSTEM.SCRIPTS.MVS1 will contain the following line:

CONNECT mvs1 admin7 *26f17e2a4c9c65c56

MTU-H363L-R3.4.3 Page 18

USER-Access Data Compression

Support has been added to USER-Access for data compression and expansion during file transfer. The new

SEND/RECEIVE qualifiers are:

COMPRESS - compress the source data stream (on/off)

EXPAND - expand the destination data stream (on/off)

METHOD - the method of compression (RLE/LZW)

Supported compression methods are RLE and LZW methods.

The RLE compression method uses a simple Run Length Encoding algorithm that counts strings of repeated

characters (usually spaces or nulls). The RLE method will never grow data that is already compressed

(except for the addition of the compression header).

The LZW method uses the Lempel-Ziv-Welch algorithm for finding common substrings. This method is

deterministic and can be performed on the fly. Block compression is performed with an adaptive reset

whereby the code table is cleared when the compression ratio decreases. This method generally provides

the best overall compression ratio, but requires significantly more CPU resource than the RLE method.

LZW compression ratios for character data are typically 40% to 60% of the original data size. LZW

compression ratios for binary data are difficult to predict. Applying LZW compression to already

compressed data could actually increase the data size up to 130% of the original size.

The following examples demonstrate file transfers using the -COMPRESS and -EXPAND qualifiers.

Send a binary source file ‘data’ with data compression enabled. The destination file ‘data.cmp’ contains the

compressed data:

User> send -mode stream data data.cmp -compress

Receive the same compressed file expanding the data stream back to the original binary file:

User> receive -mode stream data.cmp data -expand

The same binary data file can be compressed, sent across the network and expanded into the destination

file:

User> send -mode stream data -compress data -expand

One-sided compress/expand (the first two examples) is possible when connected to earlier releases (pre-

R10) of USER-Access for all supported modes except CHARACTER. Two-sided compress/expand (the

last example) requires that both sides (client and server) support compression.

Only certain combinations of -COMPRESS and -EXPAND are valid with the various USER-Access

transfer modes. The following table shows which combinations are valid (Yes) and which are not valid

(No):

Transfer Mode -COMPRESS only -EXPAND only Both -COMP/-EXP

CHARACTER Yes Yes Yes

RECORD No No No

STREAM Yes Yes Yes

BACKUP Yes No Yes

MTU-H363L-R3.4.3 Page 19

Transfer Mode -COMPRESS only -EXPAND only Both -COMP/-EXP

RESTORE No Yes Yes

COPY No No Yes

V1CHAR No No No

Character Mode Compression

Both sides (client and server) of a CHARACTER mode transfer must support compression (release R10

and later). In addition, when transferring between hosts with different native character sets (e.g., ASCII to

EBCDIC) there are some subtle problems caused by the fact that only the USER-Access client performs

code conversion.

The character set of the compressed data is stored in the compression header that prefixes the compressed

data stream. This information can be used during expansion to determine if code conversion must be

performed.

The following table illustrates the various combinations of CHARACTER mode compress/expand. The

source and destination file types are shown as well as any code conversion issues:

USER-Access command Source Destination Code Conversion performed…

send -compress text stream by client before compress

receive -compress text stream not done - server pushes an informative

message - flags its native char set in header

send -expand stream text not done - error if char set in header does not

match server’s char set

receive -expand stream text by client after expand if char set in header does

not match client’s native char set

send -compress -expand text text by client before compress

receive -compress -expand text text by client after expand

MTU-H363L-R3.4.3 Page 20

Command Piping

Command piping is the mechanism used for NonStop BACKUP/RESTORE where a data stream is directed

to/from the USER-Access (TAPE) device. In this case the USER-Access named process looks like a tape

device to the BACKUP and RESTORE utilities.

This mechanism has been generalized to allow command piping for any application or NonStop utility that

supports I/O to a named process file. The source or destination of a file transfer can be a ‘piped command’

where the data is piped directly to/from the application or NonStop utility without intermediate staging of

data on disk. This usually provides a performance advantage as well as eliminating the disk space

requirements.

Piped commands are flagged in the USER-Access SEND/RECEIVE command by prefixing the command

string with an exclamation mark (!). Piped commands containing embedded blanks must be enclosed within

double quotes. Piped commands usually contain a special tag string such as (TAPE) that gets replaced by

USER-Access with a named process file. For example, if the USER-Access process name is $Z347, the tag

string (TAPE) gets replaced with the named process file $Z347.#TAPE. Then USER-Access monitors its

$RECEIVE queue looking for open/close system messages with the special process name qualifiers (e.g.,

#TAPE).

There are several tag strings recognized by USER-Access. They are:

(TAPE)

Piping mechanism used where the USER-Access named process looks like a tape device to the

NonStop BACKUP and RESTORE utilities.

(PIPE)

General named process piping mechanism. Each logical record is processed individually.

(BLOCK)

Piping mechanism where records are blocked or unblocked using the FUP format described for the

VARIN/VAROUT parameter. Performance is improved by eliminating the overhead of

reading/writing individual logical records.

The following examples of command piping use the NonStop FUP utility to perform a variety of “filtering”

operations. Recognize that FUP is used to demonstrate functionality. However any NonStop utility, TACL

macro or user application can utilize the piped command facility:

Example #1: Send the local structured file LOCDATA to the remote file REMDATA while padding each

record with blanks (ASCII 32) to 132 characters:

User> send “!fup copy locdata,(pipe),recout 132,pad 32” remdata

Example #2: Receive the remote file REMDATA to the local structured file LOCDATA while trimming

trailing blanks:

User> receive remdata "!fup copy (pipe),locdata,trim 32"

Example #3: Load a key-sequenced file KEYDATA from a sorted remote file REMDATA:

User> receive remdata "!fup load (pipe),keydata,sorted"

Example #4: The example above can be optimized by having USER-Access block the records in VARIN

format using the (BLOCK) tag string. By default, USER-Access uses 32000 byte blocks:

User> receive remdata "!fup load (block),keydata,sorted, -

More>> varin,blockin 32000"

MTU-H363L-R3.4.3 Page 21

Example #5: Copy 1000 records from the local keyed file KEYDATA starting at the record with primary

key “SMITH”. Block the data in VAROUT format. Send to the remote file REMDATA using record mode

to preserve binary data. Notice the required set of quotes around SMITH to escape the embedded quotes:

User> send "!fup copy keydata,(block),first key ""SMITH"", -

More>> count 1000,varout,blockout 32000" remdata -mode record

Example #6: If no tag string is specified, then the normal OUTPUT (for a source command) or INPUT (for

a destination command) is piped. The following will send the FUP INFO of all the files on my current

volume to the remote file VOLINFO:

User> send "!fup info *.*" volinfo

Example #7: Piped commands can be initiated locally (as shown in the previous example) or remotely by

any USER-Access client connected to a NonStop server. The same volume information could be received

by a remote client as follows:

User> receive "!fup info *.*" volinfo

Running USER-Access in Slave Mode

In all of the previous examples, USER-Access has been operating as the “master” process controlling the

“slave” piped commands. The command piping facility allows USER-Access to operate as a slave process

interacting with external commands. Simply use the piped command syntax without any command - just

the exclamation mark (!) followed by the appropriate tag string. This is a flag to USER-Access to read/write

its named process file being accessed by an external command. USER-Access looks for an OPEN system

message with the appropriate name qualifier (e.g., #TAPE, #PIPE or #BLOCK). In order to synchronize

with the external command, USER-Access sends a command interpreter WAKEUP message (-20) to its

creator. This could be TACL or any user application invoking USER-Access with the NEWPROCESS

system service.

The following example uses a TACL macro to activate USER-Access as a “nowait” named process $USER.

USER-Access commands are taken from the text file UASCRIPT (shown later). Once USER-Access is

started, the TACL macro will PAUSE waiting for the WAKEUP message. Then a FUP COPY is directed

to the USER-Access slave process:

?tacl macro

user /name $USER, in UASCRIPT, out UALOG, nowait/

pause

fup copy locdata, $USER.#PIPE

The USER-Access script file UASCRIPT contains the following:

connect host username password

send !(pipe) remdata

exit

The USER-Access output will appear in UALOG. Multiple SEND and RECEIVE commands can be

processed. Each must be synchronized with a PAUSE command in the TACL macro.

Additional Piped Command Qualifiers

Some additional qualifiers can be included with the tag strings to fine tune the piped command processing.

These qualifiers are:

MTU-H363L-R3.4.3 Page 22

Open Timer

A numeric value (in seconds) specifying how long to wait for the piped command to actually open

the USER-Access named process. The default open timer is 5 minutes (300 seconds). You can

increase or decrease the open timer based on your requirements. A value of zero disables the open

timer (i.e., never times out).

NOWAIT

Boolean flag indicating that the piped command is being run in NOWAIT mode. USER-Access

will continue processing even though the command interpreter indicates command completion.

This flag is especially useful when invoking a piped command that “kicks off” another job that will

eventually open the named pipe process. Completion of the “kick off” process does not terminate

piped command processing.

NOWAKEup

Boolean flag that disables the WAKEUP message to the creator process. When USER-Access is

operating as a “slave” process (described earlier) the WAKEUP messages is not always necessary

to synchronize processing. This flag prevents the WAKEUP message from being sent.

The following examples expand on some of the previous examples. Once again the FUP utility is used to

demonstrate functionality:

Example #1: Send the local file LOCDATA to the remote file REMDATA. Run the piped command in

NOWAIT mode:

User> send "!fup /nowait/ copy locdata,(pipe,nowait)" remdata

Example #2: Run USER-Access as a “slave” process and send the piped data to the file REMDATA. Set

an open timer of 30 seconds. Don’t send the WAKEUP message to the creator:

User> send !(pipe,30,nowakeup) remdata

	for HP x86 L-Series NonStop Systems
	Release 3.4.3
	Memo to Users
	November 2019
	Document Revision Record

	Introduction
	Prerequisites
	Related Publications
	Software Support Limitations

	Service Notes
	Installation
	Before you Begin
	Installation Procedure
	Step 1. Select USER-Access volume.subvolume
	Step 2. Download the Distribution
	Step 3. UNPAK the Distribution
	Step 4. Install the Software from the Distribution
	The Installation Process

	Step 5. Start the Service Initiator
	Step 6. Verify USER-Access

	Making USER-Access Available To Other Users

	Update Summary
	Release 3.4.3
	Release 3.4.2
	Release 3.4.1

	Appendix A: Updating the TCP/IP Network Control Files
	Appendix B: Running with TCP/IP over Multiple Ethernet Adapters
	Running the USER-Access TCP/IP Client
	Running the USER-Access TCP/IP Service Initiator and Server

	Appendix C: Stopping the Service Initiator
	Appendix D: Service Initiator Keywords
	Appendix E: Internal Features
	Password Encryption
	Format:
	The ENCRYPT Alias
	Examples
	Example 1: Encrypting Passwords Stored in a USER-Access Input Script File
	Example 2: Using USER-Access to Generate the Input Script File

	USER-Access Data Compression
	Character Mode Compression

	Command Piping
	Running USER-Access in Slave Mode
	Additional Piped Command Qualifiers

